$D^0 - \overline{D}^0$ mixing parameter y in FAT approach

Hua-Yu Jiang(蒋华玉)

School of Nuclear Science and Technology, Lanzhou University

October 28, 2018, HFCPV, Zhengzhou

Cooperator:

Fu-Sheng Yu (Lanzhou U.), Qin Qin (Uni.Siegen), Hsiang-nan Li (Taiwan, Inst. Phys.), Cai-Dian Lu(Inst. High Energy Phys.).

- 1 $D^0 \overline{D}^0$ mixing and Motivation
- 2 Topology and FAT approach
- 3 Numerical results and Discussion

OUTLINE

① $D^0 - \overline{D}^0$ mixing and Motivation

2 Topology and FAT approach

3 Numerical results and Discussion

 $D^0 - \overline{D}^0$ mixing and Motivation

$D^0 - \overline{D}^0$ mixing

• The box diagram contributions

2 The long distance contributions

$D^0 - \overline{D}^0$ mixing and Motivation

$D^0 - \overline{D}^0$ mixing: The description of Quantum Mechanics

Evolution Equation

$$i\frac{d}{dt}\left(\frac{D^{0}(t)}{\overline{D}^{0}(t)}\right) = H\left(\frac{D^{0}(t)}{\overline{D}^{0}(t)}\right) = \left(M - \frac{i}{2}\Gamma\right)\left(\frac{D^{0}(t)}{\overline{D}^{0}(t)}\right)$$

CPT invariance imposes $M_{11} = M_{22}$, $\Gamma_{11} = \Gamma_{22}$. 2 The mass eigenstates of H

$$\begin{cases} |D_1\rangle = \frac{1}{\sqrt{|p|^2 + |q|^2}} (p|D^0\rangle + q|\overline{D}^0\rangle) \\ |D_2\rangle = \frac{1}{\sqrt{|p|^2 + |q|^2}} (p|D^0\rangle - q|\overline{D}^0\rangle) \end{cases}, \qquad \frac{q}{p} = \sqrt{\frac{M_{12}^* - \frac{i}{2}\Gamma_{12}^*}{M_{12} - \frac{i}{2}\Gamma_{12}}} \end{cases}$$

with differences in mass and width

$$\begin{cases} \Delta M_D \equiv M_2 - M_1 = -2Re\left[\frac{q}{p}(M_{12} - \frac{i}{2}\Gamma_{12})\right] \\ \Delta \Gamma_D \equiv \Gamma_1 - \Gamma_2 = -2Im\left[\frac{q}{p}(M_{12} - \frac{i}{2}\Gamma_{12})\right] \end{cases}, and x_D = \frac{\Delta M_D}{\Gamma_D}, y_D = \frac{\Delta\Gamma_D}{2\Gamma_D}\end{cases}$$

where $\Gamma_D = (\Gamma_1 + \Gamma_2)/2$

3 In the limit of CP conservation $\frac{q}{p} = 1$, $|D_1\rangle = |D_+\rangle$, $|D_2\rangle = |D_-\rangle$, and $\mathcal{CP}|D^0\rangle = +|\overline{D}^0\rangle$ $|D_+\rangle = (|D^0\rangle \pm |\overline{D}^0\rangle)/\sqrt{2}$ $D^0 - \overline{D}^0$ mixing and Motivation

Motivation

The current world averages of charm mixing parameter

$$x_D = (0.46^{+0.14}_{-0.15})\%, \quad y_D = (0.62 \pm 0.08)\%$$

[Y. Amhis et al.(Heavy Flavor Averaging Group(HFAG))(2014),1412.7515]

2 The calculation of box diagram, with internal quark d, s and b [Bigi, Uraltsev, '01].

$$\begin{cases} \Delta M_D^{b\bar{b}} \sim Q \times |V_{cb}^* V_{ub}|^2 \\ \Delta M_D^{s,d} \sim Q' \times |V_{cs}^* V_{us}|^2 \frac{(m_s^2 - m_d^2)^2}{m_c^4} \quad \Rightarrow \quad y_D^{box} \sim x_D^{box} \sim few \times 10^{-5} \end{cases}$$

③ For inclusive approach, with short-distance contributions calculated based on the heavy quark expansion, both NLO in \(\alpha_s\) and leading \(1/m_c\) corrections [Bobrowskia, Lenz, Riedla, Rohrwilda, '10; Bobrowski, Lenz, Rauh, '13] were taken into account

$$x_D \sim O(10^{-5}), \ y_D \sim O(10^{-6}).$$

In an exclusive method, y_D was computed by [H.Y.Cheng,C.W.Chiang,'10]

$$\begin{cases} y_{PP+VP} = (0.36 \pm 0.26)\%, & (A, A1) \\ y_{PP+VP} = (0.24 \pm 0.22)\%, & (S, S1) \end{cases}$$

y_D in exclusive approach

1 The parameter y can be computed via [Falk,Grossman,Ligeti,Petrov,'02]

 $D^0 - \overline{D}^0$ mixing and Motivation

$$y_{D} = \frac{1}{2\Gamma} \sum_{n} \rho_{n} \eta_{CP}(n) \left(\langle D^{0} | H_{W} | n \rangle \langle \bar{n} | H_{W} | D^{0} \rangle + \langle D^{0} | H_{W} | \bar{n} \rangle \langle n | H_{W} | D^{0} \rangle \right)$$

$$= \frac{1}{2\Gamma} \sum_{n} \rho_{n} \left(|\mathcal{A}(D_{+} \to n)|^{2} - |\mathcal{A}(D_{-} \to n)|^{2} \right)$$

$$= \frac{1}{\Gamma} \sum_{n} \eta_{CP}(n) \rho_{n} \mathcal{R}e \left[\mathcal{A}(D^{0} \to n) \mathcal{A}^{*}(D^{0} \to \bar{n}) \right]$$

$$= \sum_{n} \eta_{CKM}(n) \eta_{CP}(n) \cos \delta_{n} \sqrt{\mathcal{B}(D^{0} \to n) \mathcal{B}(D^{0} \to \bar{n})}.$$

where ρ_n is the phase-space factor and $\delta_n = \delta_{D^0 \to \bar{n}} - \delta_{D^0 \to n} = \operatorname{Arg} \left[\frac{A(D^0 \to \bar{n})}{A(D^0 \to n)} \right]$. And with $\mathcal{CP}|n\rangle = \eta_{CP}|\bar{n}\rangle$, $\eta_{CP} = \begin{cases} +1, & for \ PP, \ PV \ modes, \\ (-1)^L, & for \ VV \ modes. \end{cases}$ $\eta_{CKM} = (-1)^{n_s}$ with n_s being the number of the s or \bar{s} quarks in the final state.

2 The total contributions for y_D

$$y_D = y_{PP} + y_{PV} + y_{VV} + \cdots$$

OUTLINE

1 $D^0 - \overline{D}^0$ mixing and Motivation

2 Topology and FAT approach

3 Numerical results and Discussion

Topology diagram

According to current structure of weak decays, there are four topology at tree level.

T: the color allowed external W-emission diagram

C: the color suppressed internal W-emission diagram

E: the W-exchange diagram

A: the W-annihilation diagram

[H.n.Li,C.D.Lu,F.S.Yu,'12; H.n.Li,C.D.Lu,Q.Qin,F.S.Yu,'14] **Topology and FAT approach**

FAT approach

The topology amplitude [H.n.Li,C.D.Lu,F.S.Yu,'12; H.n.Li,C.D.Lu,Q.Qin,F.S.Yu,'14]

$$\begin{aligned} T_{P}(C_{P}) &= \frac{G_{F}}{\sqrt{2}} V_{CKM} a_{1}(a_{2}^{P}) f_{V} m_{V} F_{1}^{DP}(m_{V}^{2}) 2(\epsilon_{V} \cdot p_{D}) \\ T_{V}(C_{V}) &= \frac{G_{F}}{\sqrt{2}} V_{CKM} a_{1}(a_{2}^{V}) f_{P} m_{V} A_{0}^{DV}(m_{P}^{2}) 2(\epsilon_{V} \cdot p_{D}) \\ E_{P,V}^{nf} &= \frac{G_{F}}{\sqrt{2}} V_{CKM} C_{2} \chi_{q(s)}^{E} e^{i\phi_{q(s)}^{E}} f_{D} m_{V} \frac{f_{P} f_{V}}{f_{\pi} f_{\rho}} (\epsilon_{V} \cdot p_{D}) \\ A_{P,V}^{nf} &= \frac{G_{F}}{\sqrt{2}} V_{CKM} C_{1} \chi_{q(s)}^{A} e^{i\phi_{q(s)}^{A}} f_{D} m_{V} \frac{f_{P} f_{V}}{f_{\pi} f_{\rho}} (\epsilon_{V} \cdot p_{D}) \end{aligned}$$

with Glauber phase $Exp(iS_{\pi})$ for final state π and the effective Wilson coefficients:

$$a_1(\mu) = C_2(\mu) + \frac{C_1(\mu)}{N_C}, \quad a_2^{P(V)}(\mu) = C_1(\mu) + C_2(\mu) \left(\frac{1}{N_C} + \chi_{P(V)}^C e^{i\phi_{P(V)}^C}\right).$$

The advantage of FAT approach:

(1) The branching ratios of $D \rightarrow PP$ and PV are best described.

(2) Successfully predict the difference of CP violation:

$$\Delta a_{CP}^{dir} = a_{CP}^{dir}(K^+K^-) - a_{CP}^{dir}(\pi^+\pi^-) = (-0.6 \sim -1.9) \times 10^{-3}.$$

was confirmed by the LHCb data, $\Delta a_{CP}^{dir} = (-0.61 \pm 0.76) \times 10^{-3}$ [R. Aaij et al.(LHCb),'16].

10 / 22

OUTLINE

1 $D^0 - \overline{D}^0$ mixing and Motivation

2 Topology and FAT approach

Numerical results and Discussion

The fitting results

We focus on the D⁰ decay modes, then those irrelevant about annihilation amplitudes will not be considered. The updated parameters [HYJ,F.S.Yu,Q.Qin,H.n.Li,C.D.Lu,'18]

$$\begin{split} \chi^C_{nf} &= -0.81 \pm 0.01, \ \phi^C_{nf} = 0.22 \pm 0.14, & \chi^C_P = 0.63 \pm 0.03, \ \phi^C_P = 1.57 \pm 0.11, \\ \chi^E_q &= 0.056 \pm 0.002, \ \phi^E_q = 5.03 \pm 0.06, \\ \chi^E_s &= 0.130 \pm 0.008, \ \phi^E_s = 4.37 \pm 0.10, \\ S_\pi &= -0.92 \pm 0.07, \end{split} \qquad \begin{aligned} \chi^C_q &= 0.49 \pm 0.03, \ \phi^E_q = 1.61 \pm 0.07, \\ \chi^E_s &= 0.54 \pm 0.03, \ \phi^E_s = 2.23 \pm 0.08, \\ S_\pi &= -1.88 \pm 0.12, \end{aligned}$$

for the $D^0 \rightarrow PP$ decays, and

for the $D^0 \rightarrow PV$ decays.

2 The branching ratios are listed in Table 1, and

$$\chi^2/dof = \begin{cases} 1.1, & \text{for the PP modes with 13 data} \\ 1.8, & \text{for the PV modes with 19 data} \end{cases}$$

The fitting results

Branching fractions in units of 10^{-3} . [HYJ,F.S.Yu,Q.Qin,H.n.Li,C.D.Lu,'18]

Modes	$\mathcal{B}(exp)$	$\mathcal{B}(FAT)$	Modes	$\mathcal{B}(exp)$	$\mathcal{B}(FAT)$	Modes	$\mathcal{B}(exp)[PDG]$	$\mathcal{B}(FAT)$
$\pi^0 \overline{K}^0$	24.0 ± 0.8	24.2 ± 0.8	$\pi^0 \overline{K}^{*0}$	37.5 ± 2.9	35.9 ± 2.2	$\overline{K}^0 \rho^0$	$12.8^{+1.4}_{-1.6}$	13.5 ± 1.4
$\pi^+ K^-$	39.3 ± 0.4	39.2 ± 0.4	$\pi^+ K^{*-}$	54.3 ± 4.4	62.5 ± 2.7	$K^- \rho^+$	111.0 ± 9.0	105.0 ± 5.2
$\eta \overline{K}^0$	9.70 ± 0.6	9.6 ± 0.6	$\eta \overline{K}^{*0}$	9.6 ± 3.0	6.1 ± 1.0	$\overline{K}^0\omega$	22.2 ± 1.2	22.3 ± 1.1
$\eta' \overline{K}^0$	19.0 ± 1.0	19.5 ± 1.0	$\eta' \overline{K}^{*0}$	< 1.10	0.19 ± 0.01	$\overline{K}^0 \phi$	$8.47\substack{+0.66\\-0.34}$	8.2 ± 0.6
$\pi^+\pi^-$	1.421 ± 0.025	1.44 ± 0.02	$\pi^+ ho^-$	5.09 ± 0.34	4.5 ± 0.2	$\pi^- ho^+$	10.0 ± 0.6	9.2 ± 0.3
K^+K^-	4.01 ± 0.07	4.05 ± 0.07	K^+K^{*-}	1.62 ± 0.15	1.8 ± 0.1	K^-K^{*+}	4.50 ± 0.30	4.3 ± 0.2
$K^0 \overline{K}^0$	0.36 ± 0.08	0.29 ± 0.07	$K^0 \overline{K}^{*0}$	0.18 ± 0.04	0.19 ± 0.03	$\overline{K}^0 K^{*0}$	0.21 ± 0.04	0.19 ± 0.03
$\pi^0\eta$	0.69 ± 0.07	0.74 ± 0.03	ηho^0		1.4 ± 0.2	$\pi^0 \omega$	0.117 ± 0.035	0.10 ± 0.03
$\pi^0\eta'$	0.91 ± 0.14	$1.08{\pm}0.05$	$\eta' ho^0$		0.25 ± 0.01	$\pi^0 \phi$	1.35 ± 0.10	1.4 ± 0.1
$\eta\eta$	1.70 ± 0.20	$1.86{\pm}0.06$	$\eta\omega$	2.21 ± 0.23	2.0 ± 0.1	$\eta\phi$	0.14 ± 0.05	0.18 ± 0.04
$\eta\eta'$	1.07 ± 0.26	$1.05{\pm}0.08$	$\eta'\omega$		0.044 ± 0.004			
$\pi^0\pi^0$	0.826 ± 0.035	0.78 ± 0.03	$\pi^0 ho^0$	3.82 ± 0.29	4.1 ± 0.2			
$\pi^0 K^0$		$0.069{\pm}0.002$	$\pi^0 K^{*0}$		0.103 ± 0.006	$K^0 \rho^0$		0.039 ± 0.004
$\pi^- K^+$	0.133 ± 0.009	$0.133{\pm}0.001$	$\pi^- K^{*+}$	$0.345\substack{+0.180\\-0.102}$	0.40 ± 0.02	$K^+ \rho^-$		0.144 ± 0.009
ηK^0		$0.027{\pm}0.002$	ηK^{*0}		0.017 ± 0.003	$K^0\omega$		0.064 ± 0.003
$\eta' K^0$		$0.056{\pm}0.003$	$\eta' K^{*0}$		0.00055 ± 0.00004	$K^0\phi$		0.024 ± 0.002

vanish in the SU(3) symmetry limit

$$\begin{aligned} \mathcal{B}(\pi^{+}\pi^{-}) + \mathcal{B}(K^{+}K^{-}) &- 2\cos\delta_{K^{+}\pi^{-}}\sqrt{\mathcal{B}(K^{-}\pi^{+})\mathcal{B}(K^{+}\pi^{-})} \\ + \mathcal{B}(\pi^{0}\pi^{0}) + \mathcal{B}(K^{0}\bar{K}^{0}) - 2\cos\delta_{K^{0}\pi^{0}}\sqrt{\mathcal{B}(\bar{K}^{0}\pi^{0})\mathcal{B}(K^{0}\pi^{0})} \\ + \mathcal{B}(\pi^{0}\eta) + \mathcal{B}(\pi^{0}\eta') + \mathcal{B}(\eta\eta) + \mathcal{B}(\eta\eta') \\ - 2\cos\delta_{K^{0}\eta}\sqrt{\mathcal{B}(\bar{K}^{0}\eta)\mathcal{B}(K^{0}\eta)} - 2\cos\delta_{K^{0}\eta'}\sqrt{\mathcal{B}(\bar{K}^{0}\eta')\mathcal{B}(K^{0}\eta')} \end{aligned}$$

$$\Rightarrow \qquad y_{PP} = (0.10 \pm 0.02)\%$$

[**HYJ**,F.S.Yu,Q.Qin,H.n.Li,C.D.Lu,'18]

$$\begin{split} Br(\pi^{0}\rho^{0}) + Br(\pi^{0}\omega) + Br(\pi^{0}\phi) + Br(\eta\omega) + Br(\eta'\omega) + Br(\eta\phi) + Br(\eta\rho^{0}) + Br(\eta\rho^{0}) \\ -2\cos\delta_{K^{*-}\pi^{+}}\sqrt{Br(K^{*-}\pi^{+})Br(K^{*+}\pi^{-})} - 2\cos\delta_{K^{*0}\pi^{0}}\sqrt{Br(K^{*0}\pi^{0})Br(\bar{K}^{*0}\pi^{0})} \\ -2\cos\delta_{K^{-}\rho^{+}}\sqrt{Br(K^{-}\rho^{+})Br(K^{+}\rho^{-})} - 2\cos\delta_{K^{0}\rho^{0}}\sqrt{Br(K^{0}\rho^{0})Br(\bar{K}^{0}\rho^{0})} \\ -2\cos\delta_{K^{*0}\eta}\sqrt{Br(K^{*0}\eta)Br(\bar{K}^{*0}\eta)} - 2\cos\delta_{K^{*0}\eta'}\sqrt{Br(K^{*0}\eta')Br(\bar{K}^{*0}\eta')} \\ -2\cos\delta_{K^{*0}\omega}\sqrt{Br(K^{0}\omega)Br(\bar{K}^{0}\omega)} - 2\cos\delta_{K^{0}\phi}\sqrt{Br(K^{0}\phi)Br(\bar{K}^{0}\phi)} \\ +2\cos\delta_{K^{+}K^{*-}}\sqrt{Br(K^{+}K^{*-})Br(K^{-}K^{*+})} + 2\cos\delta_{K^{0}\bar{K}^{*0}}\sqrt{Br(K^{0}\bar{K}^{*0})Br(\bar{K}^{0}K^{*0})} \\ +2\cos\delta_{\pi^{+}\rho^{-}}\sqrt{Br(\pi^{+}\rho^{-})Br(\pi^{-}\rho^{+})} \end{split}$$

$$\Rightarrow \qquad y_{PV} = (0.11 \pm 0.07)\%$$

[HYJ,F.S.Yu,Q.Qin,H.n.Li,C.D.Lu,'18]

$$y_{PV} = 0.32 \pm 0.07 \implies y_{PV} = 0.11 \pm 0.07$$

	Before 2016		After 2		
	$\mathscr{B}_{\mathrm{exp}}$	$\mathscr{B}_{\mathrm{th}}$	B _{exp}	$\mathscr{B}_{\mathrm{th}}$	10^{-3}
$D^0 \to \overline{K}^{*0} K^0$	< 1	1.1	0.18 ± 0.04	$0.19 \pm$	0.03
$D^0 \to K^{*0} \overline{K}{}^0$	< 0.56	1.1	0.21 ± 0.04	0.19 ±	0.03
	PDG16		LHCb,'16		

Studies of the resonance structure in $D^0 \rightarrow K_S^0 K^{\pm} \pi^{\mp}$ decays LHCb Collaboration (Roel Aaij (CERN) *et al.*) <u>Show all 726 authors</u> Sep 22, 2015 - 35 pages Phys.Rev. D93 (2016) no.5, 052018

[H.n.Li,C.D.Lu,Q.Qin,F.S.Yu,'14]

[**HYJ**,F.S.Yu,Q.Qin,H.n.Li,C.D.Lu,'18)]

y_{PV}

Numerical results and Discussion

Calculating formula for $D^0 \rightarrow VV$

The emission-type amplitudes

$$T(C) = \frac{G_F}{\sqrt{2}} V_{CKM} a_1(\mu) \left(a_2^C(\mu) \right) f_{V_1} m_1 \\ \times \left[-ix(m_D + m_2) A_1^{DV_2}(m_1^2) + i \frac{2m_D^2 p_c^2}{(m_D + m_2)m_1 m_2} A_2^{DV_2}(m_1^2) \right],$$

in which the Wilson coefficients and the kinetic quantities are given by

$$\begin{aligned} a_1(\mu) &= \frac{C_1(\mu)}{N_c} + C_2(\mu), \qquad a_2^C(\mu) = C_1(\mu) + C_2(\mu) \left(\frac{1}{N_c} + \chi_V^C e^{i\phi_V^C}\right), \\ x &= \frac{m_D^2 - m_1^2 - m_2^2}{2m_1 m_2}, \qquad p_c^2 = \frac{m_1^2 m_2^2 (x^2 - 1)}{m_D^2}. \end{aligned}$$

2 The annihilation-type amplitudes

$$E = -i\frac{G_F}{\sqrt{2}}V_{CKM}C_2(\mu)\chi^E_{q(s)}e^{i\phi^E_{q(s)}}f_D\frac{f_{V_1}f_{V_2}}{f^2_{\rho}}m_D^2\frac{|p_c|}{\sqrt{m_1m_2}}$$

[HYJ,F.S.Yu,Q.Qin,H.n.Li,C.D.Lu,'18]

Branching ratios for the $D^0 \rightarrow VV$ decays in units of 10^{-3} .

Modes	$\mathcal{B}_{ ext{tot}}(ext{exp})$	$\mathcal{B}_{ ext{long}}(ext{exp})$	$\mathcal{B}_{ ext{long}}(FAT)$
$ ho^0 \overline{K}^{*0}$	15.9 ± 3.5		$14.3{\pm}1.6$
$\rho^+ K^{*-}$	65.0 ± 25.0		41.8±2.4
$\overline{K}^{*0}\omega$	11.0 ± 5.0		37.7±2.7
$ ho^+ ho^-$			4.1±0.3
$K^{*+}K^{*-}$			$1.18{\pm}0.06$
$K^{*0}\overline{K}^{*0}$			$0.043{\pm}0.006$
$ ho^0 ho^0$	1.83 ± 0.13	1.25 ± 0.13	$1.4{\pm}0.2$
$ ho^0\omega$			$1.37{\pm}0.08$
$ ho^0 \phi$			$0.65{\pm}0.04$
$\omega\omega$			$0.53{\pm}0.08$
$\omega\phi$			$1.4{\pm}0.1$
$ ho^0 K^{*0}$			$0.041{\pm}0.005$
$ ho^- K^{*+}$			$0.143{\pm}0.008$
$K^{*0}\omega$			$0.108{\pm}0.008$

- A longitudinal amplitude A_0 is a linear combination of the partial waves S and D, namely, of the L = 0 and 2 final states, leading to $\eta_{\rm CP}(n) = +1$.
- We obtain the longitudinal VV contribution

 $y_{VV} = (-0.042 \pm 0.034)\%.$

[**HYJ**,F.S.Yu,Q.Qin,H.n.Li, C.D.Lu,18]

OUTLINE

1 $D^0 - \overline{D}^0$ mixing and Motivation

- 2 Topology and FAT approach
- 3 Numerical results and Discussion

Summary

1 Based on FAT approach, we obtain the charm mixing parameter y from the contributions of PP, PV and VV modes:

 $\begin{cases} y_{PP} = (0.10 \pm 0.02)\%, \\ y_{PV} = (0.11 \pm 0.07)\%, \\ y_{VV} = (-0.042 \pm 0.034)\%, \\ \end{cases} \Rightarrow y_{PP+PV} = (0.21 \pm 0.07)\%$

which far below the data $y_{exp} = (0.61 \pm 0.08)\%$. And, it is much more precise than those in [H.Y.Cheng,C.W.Chiang,'10].

In conclusion, we need new consideration and other decay modes, such as VA, AP, or multi-particle final states should be considered in calculation.

Summary

1 Based on FAT approach, we obtain the charm mixing parameter y from the contributions of PP, PV and VV modes:

 $\begin{cases} y_{PP} = (0.10 \pm 0.02)\%, \\ y_{PV} = (0.11 \pm 0.07)\%, \\ y_{VV} = (-0.042 \pm 0.034)\%, \\ \end{cases} \Rightarrow y_{PP+PV} = (0.21 \pm 0.07)\%$

which far below the data $y_{exp} = (0.61 \pm 0.08)\%$. And, it is much more precise than those in [H.Y.Cheng,C.W.Chiang,'10].

2 In conclusion, we need new consideration and other decay modes, such as VA, AP, or multi-particle final states should be considered in calculation.

Thank you for your attention!

Cabibbo-Kabayashi-Maskawa Matrix

1 V_{CKM} represent the element of CKM matrix:

$$\begin{bmatrix} d'\\s'\\b' \end{bmatrix} = \begin{bmatrix} V_{ud} & V_{us} & V_{ub}\\V_{cd} & V_{cs} & V_{cb}\\V_{td} & V_{ts} & V_{tb} \end{bmatrix} \begin{bmatrix} d\\s\\b \end{bmatrix} = \begin{bmatrix} 1-\lambda^2/2 & \lambda & A\lambda^3(\rho-i\eta)\\-\lambda & 1-\lambda^2/2 & A\lambda^2\\A\lambda^3(1-\rho-i\eta) & -A\lambda^2 & 1 \end{bmatrix} \begin{bmatrix} d\\s\\b \end{bmatrix}$$

where (d, s, b) and (d', s', b') are respectively mass eigenstates and weak interaction eigenstates. The mixing parameter $\lambda \sim 0.02$.

② The non-leptonic two body decays of charm meson can be classified

 $\begin{array}{ll} {\rm CF} & V_{ud}V_{cs}\sim 1\\ {\rm SCS} & V_{ud}V_{cd}, V_{us}V_{cs}\sim 10^{-1}\\ {\rm DCS} & V_{cd}V_{us}\sim 10^{-2} \end{array}$

Cabibbo-favored singly Cabibbo suppressed doubly Cabibbo suppressed