Strong Decays of the Excited D and D_s Mesons $(D_0^*(2400), D_J^*(3000), D_J(3000), D_{sJ}(3040))$

Tan Xiaoze, Li Sichen

Harbin Institute of Technology

Base on

Phys. Rev. D 97, 054002 (2018). & Eur. Phys. J. C 78, 583 (2018). In cooperation with: Wang Tianhong, Jiang Yue, Li Qiang, Wang Guo-Li, Chang Chao-Hsi

> HFCPV · ZhengZhou 2018-10-28

Outline

1 Motivation

2 B-S method

3 Formalism of strong decay

4 Numerical results

Motivation

In 2004, the FOCUS Collaboration and the Belle Collaboration observed the D_0^* (1*P*(0⁺)¹, has been studied widely and carefully).

In 2009, $D_{sJ}(3040)$ was reported by the BABAR Collaboration in the D^*K channel². In 2013, the LHCb Collaboration announced $D_J(3000)$ and $D^*_J(3000)$ in $D^*\pi$ and $D\pi$ mass spectrum respectively³.

$$\begin{split} M_{D_0^*(2400)^0} &= (2308 \pm 17 \pm 15 \pm 28) \text{MeV}, & M_{D_j^*(3000)} &= 3008.1 \pm 4.0 \text{ MeV}, \\ \Gamma_{D_0^*(2400)^0} &= (276 \pm 21 \pm 18 \pm 60) \text{MeV}, & \Gamma_{D_j^*(3000)} &= 110.5 \pm 11.5 \text{ MeV}. \\ M_{D_{sl}(3040)^+} &= \left(3044 \pm 8^{+30}_{-5}\right) \text{ MeV}, & M_{D_l(3000)^0} &= (2971.8 \pm 8.7) \text{ MeV}, \\ \Gamma_{D_{sl}(3040)^+} &= \left(239 \pm 35^{+46}_{-42}\right) \text{ MeV}, & \Gamma_{D_l(3000)^0} &= (188.1 \pm 44.8) \text{ MeV}. \end{split}$$

¹Phys. Lett. B 586, 11 (2004), Phys. Rev. D 69, 112002 (2004)
 ²Phys. Rev. D 80, 092003 (2009).
 ³JHEP 2013, 145 (2013)

Spin analysis indicates that $D_{sJ}(3040)$ and $D_J(3000)$ has an unnatural parity. Their masses are lower than the 3^1S_0 and higher than the 1^1D_2 and 1^3D_2 states in theoretical predictions, located in the mass region of $2P(1^+)$ states.

The parity of $D_J^*(3000)$ is still uncertain, but most work treate it as a natural parity particle. The assignments of 0^+ , 1^- , 2^+ , 3^- and 4^+ are possible.

J^{P}	$n^{2S+1}J_L$	Godfrey1985	Pierro2001	Ebert2009	Sun2013	Godfrey2016
0+	$1^{3}P_{0}$	2400	2377	2466	2398	2399
0	$2^{3}P_{0}$	-	2949	2919	2932	2931
1-	$3^{3}S_{1}$	-	3226	3096	3111	3110
2+	$2^{3}P_{2}$	-	3035	3012	2957	2957
2-	$1^{3}D_{3}$	2830	2799	2863	2833	2833
3	$2^{3}D_{3}$	-	-	3335	3226	3226
4+	$1^{3}F_{4}$	3110	3091	3187	3113	3113

Table 1-1: Several natural parity candidates of $D_J^*(3000)^0$ (MeV)

Phys. Rev. D 32, 189 (1985), Phys. Rev. D 64, 114004 (2001), Eur. Phys. J. C 66, 197 (2009),

Phys. Rev .D 88, 094020 (2013), Phys. Rev. D 93, 034035 (2016)

$n^{2S+1}L_J$	Mode	Sun2013	Yu2015	Lü2014	Song2015	Godfrey2016
	$D\pi$	0.91	5.45	14.0	13.5	3.21
23.0	$D^*\pi$	3.5	4.85	19.4	25.7	5.6
5'51	Total	18.0	87.2	158.0	103.0	80.4
	Dπ	49	35.9	83.5	72.5	25.4
2^{3} D	$D^*\pi$	-	-	-	-	-
$2^{\circ}P_0$	Total	194	224.5	639.3	298.4	190
	$D\pi$	1.8	5.0	1.92	1.46	5.0
23.0	$D^*\pi$	8.1×10^{-3}	17.8	11.89	0.12	17.1
$2^{\circ}P_2$	Total	47.0	174.5	110.5	68.9	114
	$D\pi$	16	18.8	28.6	26.1	23.1
135	$D^*\pi$	13	15.7	21.0	18.8	18.5
$1^{\circ}F_2$	Total	136	116.4	342.9	222.0	243
	$D\pi$	1.2	21.3	9.96	4.97	15.8
13 <i>E</i>	$D^*\pi$	1.8	14.1	9.41	5.31	15.2
$1^{\circ}F_4$	Total	39	102.3	103.9	94.5	129

Table 1-2: Decay widths of $D_I^*(3000)^0$ with different assignments (MeV)

Phys. Rev .D 88, 094020 (2013), Chin. Phys. C 39, 063101 (2015), Phys. Rev. D 90, 054024 (2014),

Phys. Rev. D 92, 074011 (2015), Phys. Rev. D 93, 034035 (2016).

In 2016, the LHCb announced another natural parity D meson $(3214 \pm 29 \text{ MeV})^4$, and confirmed its quantum number is 2^3P_2 . Thus $D_J^*(3000)$ cannot be the 2⁺ state.

Otherwise, $D_J(3000)$ was only found in $D^*\pi$ spectrum, while $D^*_J(3000)$ only in $D\pi$ spectrum in the LHCb experiment.

$$D({}^{3}P_{0}) \rightarrow D^{*}\pi$$

 $D(1{}^{3}F_{4}, 3{}^{3}S_{1}, 2{}^{3}P_{2}, 2{}^{3}D_{3}) \rightarrow D^{*}\pi$

Thus, the assignment of $2^{3}P_{0}$ (2P 0⁺) for $D_{J}^{*}(3000)$ is more reasonable.

We try to calculate the two-body strong decays of the excited D and D_s mesons $D_0^*(2400), D_J^*(3000), D_J(3000), D_{sJ}(3040)$ by using the relativistic Bethe-Salpeter (BS) method.

⁴Phys. Rev. D 94, 072001 (2016).

B-S(Bethe-Salpeter) method

The BS equation of two-body bound state can read in momentum space as

$$S_1^{-1}\chi_P(q)S_2^{-1} = \mathbf{i} \int \frac{\mathrm{d}^4k}{(2\pi)^4} I(P;q,k)\chi_P(k), \tag{2-1}$$

We follow Salpeter to take the instantaneous approximation $I(P; q, k) \approx I(q_{\perp} - k_{\perp})$ The three-dimensional salpeter wave function $\psi(q_{\perp})$ is defined by

$$\psi(q_{\perp}) = \mathbf{i} \int \frac{\mathrm{d}q_P}{2\pi} \chi_P(q), \quad \chi_P(q) = S_1(p_1) \int \frac{\mathrm{d}^3 k}{(2\pi)^3} I(q_{\perp} - k_{\perp}) \psi_P(k_{\perp}) S_2(p_2) \quad (2-2)$$

We adopt the Cornell potential as the interaction kernel I(r)

$$I(r) = V_s(r) + V_0 + \gamma_0 \otimes \gamma^0 V_v(r) = \frac{\lambda}{\alpha} (1 - e^{-\alpha r}) + V_0 - \frac{4}{3} \frac{\alpha_s}{r} e^{-\alpha r}, \qquad (2-3)$$

B-S wave founction

For example, we express the relativistic wave function of a scalar meson as

$$\varphi_{0^{+}}(q_{\perp}) = M \left[\frac{q_{\perp}}{M} f_{a1}(q_{\perp}) + \frac{p_{q_{\perp}}}{M^2} f_{a2}(q_{\perp}) + f_{a3}(q_{\perp}) + \frac{p}{M} f_{a4}(q_{\perp}) \right],$$
(2-4)

Within BS framwork, the four wave functions f_{ai} are independent, they have the following relations

$$f_{a3} = \frac{q_{\perp}^{2}(\omega_{1} + \omega_{2})}{M(m_{1}\omega_{2} + m_{2}\omega_{1})}f_{a1},$$

$$f_{a4} = \frac{q_{\perp}^{2}(\omega_{1} - \omega_{2})}{M(m_{1}\omega_{2} + m_{2}\omega_{1})}f_{a2},$$
(2-5)

In our calculation, we only keep the positive energy parts $\varphi_{P_i}^{++}(q_{i\perp})$ of the relativistic wave functions because the negative energy part contributes too small.

 ${}^{1}P_{1}$ and ${}^{3}P_{1}$ are

$$\varphi_{1^{+-}}^{++}(q_{\perp}) = q_{\perp} \cdot \epsilon \left[B_1 + \frac{p}{M} B_2 + \frac{q_{\perp}}{M} B_3 + \frac{p_{\perp}}{M^2} B_4 \right] \gamma_5, \tag{2-7}$$

$$\varphi_{1^{++}}^{++}(q_{\perp}) = i\varepsilon_{\mu\nu\alpha\beta}\frac{P^{\nu}}{M}q_{\perp}^{\alpha}\epsilon^{\beta}\gamma^{\mu}\left[C_{1} + \frac{I}{M}C_{2} + \frac{q_{\perp}}{M}C_{3} + \frac{I}{M^{2}}C_{4}\right].$$
(2-8)

Formalism of strong decay

We take the channel $D_0^*(2400)^0 \rightarrow D^+\pi^-$ as an example. The Feynman diagram of this process is shown in Fig. 3-1.

By using the reduction formula, the transition matrix element can be written as

$$T = \langle D^{+}(P_{f1})\pi^{-}(P_{f2}) | D_{0}^{*}(P_{i}) \rangle$$

= $\int d^{4}x e^{iP_{f2}\cdot x} (M_{f2}^{2} - P_{f2}^{2}) \langle D^{+}(P_{f1}) | \phi_{\pi}(x) | D_{0}^{*}(P_{i}) \rangle.$ (3-1)

By using the PCAC relation, the field can be expressed as

$$\phi_{\pi}(x) = \frac{1}{M_{f2}^2 f_{\pi}} \partial^{\mu}(\overline{u}\gamma_{\mu}\gamma_5 d), \qquad (3-2)$$

According to the low energy theorem the Feynman diagram turns to Fig. 3-2 and the amplitude can be written as

$$T = \frac{M_{f2}^{2} - P_{f2}^{2}}{M_{f2}^{2} f_{\pi}} \int d^{4}x e^{iP_{f2} \cdot x} \langle D^{+}(P_{f1}) \left| \partial^{\mu}(\bar{u}\gamma_{\mu}\gamma_{5}d) \right| D_{0}^{*}(P_{i}) \rangle$$

$$\approx -i \frac{P_{f2}^{\mu}}{f_{\pi}} \int d^{4}x e^{iP_{f2} \cdot x} \langle D^{+}(P_{f1}) \left| \bar{u}\gamma_{\mu}\gamma_{5}d \right| D_{0}^{*}(P_{i}) \rangle$$

$$= -i \frac{P_{f2}^{\mu}}{f_{\pi}} (2\pi)^{4} \delta^{4}(P_{i} - P_{f1} - P_{f2}) \langle D^{+}(P_{f1}) \left| \bar{u}\gamma_{\mu}\gamma_{5}d \right| D_{0}^{*}(P_{i}) \rangle.$$
(3-3)

Within Mandelstam formalism, we can write the hadronic transition amplitude as

$$\mathcal{M} = -i \frac{P_{f_2}^{\mu}}{f_{\pi}} \langle D^+(P_{f_1}) \left| \overline{u} \gamma_{\mu} \gamma_5 d \right| D_0^*(P_i) \rangle$$

$$= -i \frac{P_{f_2}^{\mu}}{f_{\pi}} \int \frac{d^3 q}{(2\pi)^3} \mathrm{Tr} \left[\overline{\varphi}_{P_{f_1}}^{++}(q_{f_1\perp}) \frac{I\!\!\!P_i}{M_i} \varphi_{P_i}^{++}(q_{\perp}) \gamma_{\mu} \gamma_5 \right].$$
(3-4)

Mixing of the 1⁺ **state**

For heavy-light 1⁺ state, we do not use the *S*-*L* coupling, but *j*-*j* coupling. The orbital angular momentum \vec{L} couples with the light quark spin \vec{s}_q .

Then 1⁺ state can be grouped into a doublet by the total angular momentum of the light quark($|j_l = 1/2\rangle$ and $|j_l = 3/2\rangle$).

$$\begin{pmatrix} |J^{P} = 1^{+}, j_{l} = 3/2 \rangle \\ |J^{P} = 1^{+'}, j_{l} = 1/2 \rangle \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} |^{1}P_{1} \rangle \\ |^{3}P_{1} \rangle \end{pmatrix}.$$
(3-5)

We solve the Salpeter equations for ${}^{3}P_{1}$ and ${}^{1}P_{1}$ states individually, and use these mixing relations to calculate the contributions of two physical 1⁺ states.

We choose the ideal mixing angle $\theta = 35.3^{\circ}$ within the heavy quark limit.

The effective Lagrangian

The PCAC rule is not valid for the light vector mesons. When ρ or ω meson appears in the final states, we choose the effective Lagrangian method to calculate the transition amplitude. The Lagrangian of quark-meson coupling can be expressed as

$$\mathcal{L}_{qqV} = \bar{q}_i (a\gamma_\mu + \frac{ib}{2M_{P_{22}}} \sigma_{\mu\nu} P_{j2}^{\nu}) V_{ij}^{\mu} q_j.$$
(3-6)

where V_{ij}^{μ} is the field of the light vector meson; q_i and \bar{q}_j are its constitute quarks. And we choose the parameters a = -3 and b = 2 which represent the vector and tensor coupling strength, respectively. Then we use Eq. (3-6) to derive the light-vector meson's vertex and get the transition amplitude

$$\mathcal{M} = -\mathbf{i} \int \frac{\mathrm{d}^3 q}{(2\pi)^3} \mathrm{Tr} \left[\overline{\varphi}_{P_{f1}}^{++}(q_{f1\perp}) \frac{\not\!\!P_i}{M_i} \varphi_{P_i}^{++}(q_\perp) (a\gamma_\mu + \frac{\mathrm{i}b}{2M_{f2}} \sigma_{\mu\nu} P_{f2}^{\nu}) \varepsilon_2^{\mu} \right].$$
(3-7)

The two-body decay width can be expressed as

$$\Gamma = \frac{1}{2J+1} \frac{|\vec{P_{fl}}|}{8\pi M_i^2} \sum_{\lambda} |\mathcal{M}|^2.$$
(3-8)

$D_J(3000)$ Numerical Results (as $2P(1^+)$)

Table 4-3: The decay widths of $D_J(3000)^0$ as the 2P(1⁺) state(MeV).

	Final state	Ours	QPC Model	³ P ₀ Model	Godfrey-Isgur	³ P ₀ Model ₂
$1^+ \rightarrow 1^- 0^-$	$D^*(2007)^0\pi^0$	0.97	1.3	11.85	37.0	15.64
	$D^{*}(2010)^{+}\pi^{-}$	1.83	1.5	23.62	57.9	31.25
	$D^{*}(2007)^{0}\eta$	0.10	0.49	2.48	5.0	6.88
	$D^{*}(2007)^{0}\eta'$	0.08	0.00026	18.72		0.95
	$D^*(2600)^0\pi^0$	4.78			1.2	5.93
	$D^{*}(2600)^{+}\pi^{-}$	9.56			1.5	11.84
	$D^{*}(2650)^{0}\pi^{0}$	0.26				0.02
	$D^{*}(2650)^{+}\pi^{-}$	0.52				0.04
$1^+ \rightarrow 0^- 1^-$	$D^0 \rho^0$	1.90	47	17.27	2.4	1.16
	$D^{+}\rho^{-}$	4.31	4.7	34.52	3.4	1.98
	$D^0\omega$	1.89	1.5	17.30	1.1	0.95
$1^+ \rightarrow 1^- 1^-$	$D^{*}(2007)^{0}\rho^{0}$	11.30	14	18.46	24.4	32.84
	$D^{*}(2010)^{+}\rho^{-}$	21.29	14	36.26	24.4	62.68
	$D^{*}(2007)^{0}\omega$	10.90	4.6	17.53	8.2	31.31
$1^+ \rightarrow 0^+ 0^-$	$D_0^*(2400)^0\pi^0$	0.46		0.17	4.0	0.94
	$D_0^*(2400)^+\pi^-$	1.40	11		4.9	1.98
	$D_0^*(2400)^0\eta$	0.23	0.14	0.30		0.4
$1^+ \rightarrow 1^+ 0^-$	$D_1(2420)^0\pi^0$	2.34		0.024	5.2	11.32
	$D_1(2420)^+\pi^-$	4.70	0.0		3.2	22.62
	$D_1(2420)\eta$	0.0029	0.0023	0.0061		0.03
	$D_1(2430)^0\pi^0$	0.15	6.2	0.0081	2.5	0.15
	$D_1(2430)^+\pi^-$	0.30	5.5		2.5	0.29
	$D_1(2430)^0\eta$	-	-	0.003	-	-
$1^+ \rightarrow 2^+ 0^-$	$D_2^*(2460)^0\pi^0$	2.89	3.3	28.05	7.4	6.98
	$D_2^*(2460)^+\pi^-$	5.68	5.5	56.21	7.4	13.70
	$D_2^*(2460)^0\eta$	-	-	0.56	-	-
$1^+ \rightarrow 0^- 1^-$	$D_{s}^{*}K^{*-}$	0.41	0.7	3.82	14.3	10.41
$1^+ \rightarrow 1^- 0^-$	$D_{s}^{**}K^{-}$	0.055	0.099	1.22	9.0	4.14
$1^+ \rightarrow 0^+ 0^-$	$D_{s0}^{*}(2317)^{+}K^{-}$	5.29	1.2	0.52		0.74
$1^+ \rightarrow 1^- 1^-$	$D_{s}^{*+}K^{*}$	-	-	4.08	-	-
$1^+ \rightarrow 1^+ 0^-$	$D_{s1}(2460)^+K^-$	0.043	0.045	0.024		0.01
	$D_{s1}(2536)^+K^-$	-	-	0.049	-	-
Total	$Exp: 188.1 \pm 44.8$	93.6	57.1	293.1	124.6	277.2

Phys.Rev.D88,094020(2013). Chin.Phys. C 39, 063101 (2015).

Phys. Rev. D 93, 034035 (2016).

Phys. Rev. D 90, 054024 (2014).

$D_J(3000)$ Numerical Results(2 $P(1^{+'})$)

Table 4-4: The decay widths of $D_J(3000)^0$ as the $2P(1^{+'})$ state(MeV).

	Final state	Ours	QPC Model	³ P ₀ Model	Godfrey-Isgur	³ P ₀ Model ₂
$1^+ \rightarrow 1^- 0^-$	$D^{*}(2007)^{0}\pi^{0}$	13.37	28	10.03	21.6	18.79
	$D^{*}(2010)^{+}\pi^{-}$	25.40	30	20.32	21.0	36.92
	$D^{*}(2007)^{0}\eta$	5.03	5.2	4.92		4.39
	$D^{*}(2007)^{0}\eta'$	4.15	0.023	2.71		3.80
	$D^{*}(2600)^{0}\pi^{0}$	13.14			20.0	20.90
	$D^{*}(2600)^{+}\pi^{-}$	26.28			20.9	42.04
	$D^{*}(2650)^{0}\pi^{0}$	1.01				0.02
	$D^{*}(2650)^{+}\pi^{-}$	2.02				0.32
$1^+ \rightarrow 0^- 1^-$	$D^0 \rho^0$	2.00	7.6	5.61	10.0	26.99
	$D^{+}\rho^{-}$	4.26	7.0	10.59	10.0	53.14
	$D^0\omega$	2.15	2.5	4.99	6.11	26.55
$1^+ \rightarrow 1^- 1^-$	$D^{*}(2007)^{0}\rho^{0}$	5.51	16	21.07	22.2	29.47
	$D^{*}(2010)^{+}\rho^{-}$	10.38	15	41.34	23.3	57.33
	$D^{*}(2007)^{0}\omega$	5.41	4.9	19.93	7.3	28.70
$1^+ \rightarrow 0^+ 0^-$	$D_0^*(2400)^0\pi^0$	1.90	6	0.24		1.93
	$D_0^*(2400)^+\pi^-$	4.09	0			4.06
	$D_0^*(2400)^0\eta$	0.53	0.068	0.27		0.84
$1^+ \rightarrow 1^+ 0^-$	$D_1(2420)^0\pi^0$	2.33	14	0.0081	15.0	2.77
	$D_1(2420)^+\pi^-$	4.69	14		15.9	5.53
	$D_1(2420)\eta$	0.0023	0.0042	0.003		0.0072
	$D_1(2430)^0\pi^0$	1.84		0.0099	6.2	0.11
	$D_1(2430)^+\pi^-$	3.64	11		5.5	0.21
	$D_1(2430)^0\eta$	-	-	0.0015	-	-
$1^+ \rightarrow 2^+ 0^-$	$D_2^*(2460)^0\pi^0$	30.69	28	5.39	82.3	40.40
	$D_2^*(2460)^+\pi^-$	58.01	56	10.52	02.5	80.53
	$D_2^*(2460)^0\eta$	-	-	0.024	-	-
$1^+ \rightarrow 0^- 1^-$	$D_{s}^{*}K^{*-}$	0.12	0.12	7.13	4.0	1.48
$1^+ \rightarrow 1^- 0^-$	$D_{s}^{*+}K^{-}$	1.14	3.7	9.45	4.4	0.95
$1^+ \rightarrow 0^+ 0^-$	$D_{s0}^{*}(2317)^{+}K^{-}$	0.42	0.67	0.83		1.19
$1^+ \rightarrow 1^- 1^-$	$D_{s}^{*+}K^{*}$	-	-	2.05	-	-
$1^+ \rightarrow 1^+ 0^-$	$D_{s1}(2460)^+K^-$	0.049	0.082	0.0081		0.00021
	$D_{s1}(2536)^+K^-$	-	-	0.024	-	-
Total	$Exp: 188.1 \pm 44.8$	229.6	146.8	177.5	209.9	489.3

Phys.Rev.D88,094020(2013). Chin.Phys. C 39, 063101 (2015). Phys. Rev. D 93, 034035 (2016).

Phys. Rev. D 90, 054024 (2014).

$D_{sJ}(3040)$ Numerical Results(2 $P(1^+)$)

Table 4-5: The decay widths of $D_{sJ}(3040)^+$ as the $2P(1^+)$ state(MeV).

	Final state	Ours	Goldfrey-Isgur	Constituent quark model	
$1^+ \rightarrow 1^- 0^-$	$D^*(2007)^0K^+$	0.02	61.2	7.99	
	$D^*(2010)^+K^0$	0.02	01.5	7.79	
$1^+ \rightarrow 0^+ 0^-$	$D_0^* (2400)^0 K^+$	3.46	4.05	6.86	
	$D_0^*(2400)^+K^0$	3.86	4.95	6.43	
$1^+ \rightarrow 2^+ 0^-$	$D_2^*(2460)^0 K^+$	1.05	0.7	3.00	
	$D_2^*(2460)^+K^0$	1.96	0.67	2.89	
$1^+ \rightarrow 1^- 1^-$	$D^*(2007)^0 K^{*+}$	17.06	28.0	39.84	
	$D^*(2010)^+K^{*0}$	15.81	38.9	37.36	
$1^+ \rightarrow 0^- 1^-$	$D^0 K^{*+}$	4.83	6.51	12.74	
	$D^{+}K^{*0}$	4.47	0.54	13.27	
$1^+ \rightarrow 1^+ 0^-$	$D_1(2420)^0 K^+$	2.75	2.52	4.99	
	$D_1(2420)^+K^0$	2.7	3.52	5.01	
	$D_1(2430)^0 K^+$	0.08	1.20	1.59	
	$D_1(2430)^+ K^0$	0.05	1.29	1.52	
$1^+ \rightarrow 1^- 0^-$	$D_s^{*+}\eta$	3.77	9.65	1.10	
$1^+ \rightarrow 0^+ 0^-$	$D_{s0}^{*}(2317)^{+}\eta$	1.56		1.19	Phys. Rev. D 93, 034035 (2016).
$1^+ \rightarrow 1^+ 0^-$	$D_{s1}(2460)^+\eta$	0.03		0.10	Eur. Phys. J. C 71, 1582 (2011)
$1^+ \rightarrow 1^+ 1^-$	$D_s^+\phi$		16.2	0.40	Eul. Fllys. J. C /1, 1362 (2011).
Total	$Exp: 239 \pm 35^{+46}_{-42}$	63.5	143.0	154.1	

$D_{sJ}(3040)$ Numerical Results($2P(1^{+'})$)

Table 4-6: The decay widths of $D_{sJ}(3040)^+$ as the $2P(1^{+'})$ state(MeV).

	Final state	Ours	Goldfrey-Isgur	Constituent quark model	
$1^+ \rightarrow 1^- 0^-$	$D^*(2007)^0K^+$	48.06	26.5	34.35	
	$D^*(2010)^+K^0$	47.00	30.5	34.84	
$1^+ \rightarrow 0^+ 0^-$	$D_0^* (2400)^0 K^+$	3.71	1.14	19.07	
	$D_0^*(2400)^+K^0$	3.74	1.14	14.39	
$1^+ \rightarrow 2^+ 0^-$	$D_2^*(2460)^0 K^+$	2.83	28.4	39.68	
	$D_2^*(2460)^+K^0$	4.87	28.4	38.97	
$1^+ \rightarrow 1^- 1^-$	$D^*(2007)^0 K^{*+}$	12.67	20.7	34.59	
	$D^*(2010)^+K^{*0}$	11.77	29.1	32.24	
$1^+ \rightarrow 0^- 1^-$	$D^0 K^{*+}$	5.05	22.1	31.85	
	$D^{+}K^{*0}$	4.78	32.1	30.31	
$1^+ \rightarrow 1^+ 0^-$	$D_1(2420)^0 K^+$	2.73	12.2	1.76	
	$D_1(2420)^+K^0$	2.67	12.2	1.77	
	$D_1(2430)^0 K^+$	1.58	2 20	0.5	
	$D_1(2430)^+K^0$	1.24	3.38	0.48	
$1^+ \rightarrow 1^- 0^-$	$D_s^{*+}\eta$	4.22	0.153	6.20	
$1^+ \rightarrow 0^+ 0^-$	$D_{s0}^{*}(2317)^{+}\eta$	0.37		3.12	Phys. Rev. D 93, 034035 (2016).
$1^+ \rightarrow 1^+ 0^-$	$D_{s1}(2460)^+\eta$	0.07		0.03	Eve Diver 1 (771-1592 (2011)
$1^+ \rightarrow 1^+ 1^-$	$D_s^+\phi$		4.15	0.39	Eur. 1 nys. J. C /1, 1382 (2011).
Total	$Exp:239\pm 35^{+46}_{-42}$	157.4	147.6	324.5	

D_0^* Results (as 0^+)

Mass	Chanel		Decay Width(MeV)	Exp. Value ⁵	
2218 - 20	D*(2400) ⁰	$D^+\pi^-$	151.5	267 + 40	
2318 ± 29	$D_0(2400)^* \rightarrow$	$D^0\pi^0$	74.8	267 ± 40	
2251 . 7	D*(2400)+	$D^{+}\pi^{0}$	81.6	220 + 17	
2331 ± 7	$D_0(2400) \rightarrow$	$D^0\pi^+$	164.3	230 ± 17	

Table 4-7: $D_0^*(2400)$ strong decay widths (MeV)

⁵Paticle Data Group 2016

$D_J^*(3000)$ Results (as $2P(0^+)$)

Table 4-8: Two-body strong decay widths (MeV) of $D_J^*(3000)^0$ as the $2P(0^+)$ state. "-" means the channel is forbidden, " \Box " means the channel is not included by this method.

Chanel	Final States	Ours	${}^{3}P_{0}$ Model	QPC Model	Relativistic quark model	Effective Lagrangian
$D(^1S_0)\pi$	$D^+\pi^-$ $D^0\pi^0$	11.6 6.1	23.94 11.97	49	25.4	66.2 33.3
$D(2^1S_0)\pi$	$D(2550)^+\pi^-$ $D(2550)^0\pi^0$	6.9 3.3			18.6	
$D\eta$	$D^0\eta^0$	0.51	4.26	8.8	1.53	10.8
$D\eta'$	$D^0 \eta'^0$	6.0	1.07	2.7	4.94	
D_sK	$D_s^+K^-$	~10^-3	2.85	6.6	0.76	54.2
$D_1(2420)\pi$	$D_1(2420)^0\pi^0$ $D_1(2420)^+\pi^-$	18.7 36.8	26.20	38	$96.1(^{1}P_{1})$	
$D_1(2420)\eta$	$D_1(2420)^0\eta^0$	0.85	1.37	1.1		
$D_1(2430)\pi$	$D_1(2430)^0\pi^0$	2.1	6.69	30		
1.	$D_1(2430)^+\pi^-$	4.1				
$D_1(2430)\eta$	$D_1(2430)^0\eta^0$	0.12	0.35	0.91		
$D_s(2460)K$	$D_{s1}(2460)^+K^-$	1.2	12.81	1.5		
$D^* ho$	$\begin{array}{l} D^{*}(2007)^{0}\rho^{0} \\ D^{*}(2010)^{+}\rho^{-} \end{array}$	7.0 13.3	31.60 62.01	41	32	
$D^*\omega$	$D^{*}(2007)^{0}\omega^{0}$	7.5	29.91	13	10.2	
$D_s^*K^*$	$D_s^{*+}K^{*}(892)^{-}$	4.1	3.06	1.0		
$D_s(2536)K^-$	$D_{s1}(2536)^+K^-$	-	6.40	-	-	-
T Experim	otal ental value	130.2	224.5	193.6 110.5 ± 11.5	189.5	164.5

Chin. Phys. C 39, 063101 (2015). Phys.Rev.D88,094020(2013). Phys. Rev. D 93, 034035 (2016). Phys. Rev. D 97, 014015 (2018).

	, ,	5	× , , , , , , , , , , , , , , , , , , ,	, , , ,	·
Chanel	Final States	Width	Chanel	Final States	Width
$D(^1S_0)\pi$	$D^+\pi^0$ $D^0\pi^+$	6.5 13.5	$D(2^1S_0)\pi$	$\begin{array}{c} D^0\pi^+ \\ D^0\pi^+ \end{array}$	3.8 7.7
Dη	$D^0\eta^0$	0.56	$D\eta'$	$D^0\eta'^0$	5.7
$D(2420)\pi$	$D_1(2420)^+\pi^0$ $D_1(2420)^0\pi^+$	18.3 37.4	D(2430)π	$D_1(2430)^+\pi^0$ $D_1(2430)^0\pi^+$	2.1 4.3
$D(2420)\eta$	$D_1(2420)^+\eta^0$	0.77	$D(2430)\eta$	$D_1(2430)^+\eta^0$	0.11
$D^* ho$	$D^*(2010)^+ ho^0 \ D^*(2007)^0 ho^-$	6.1 12.9	$D^*\omega$ $D_s(2460)K$	$D^*(2010)^+\omega^0$ $D_{s1}(2460)^+K^0$	6.5 1.2
$D_s K$	$D_s^+ K^0$	0.05	$D_s^*K^*$	$D_s^{*+}K^{*}(892)^0$	3.8
	Total		131	.3	
	145 (140 (140 (140 (135)) (135) (130) (125) (125) (125) (125) (125) (125)	2.92 2.94	Dj Dj 	(3000) ⁰ (3000) ⁺	
			Mass (GeV)		
	Figure	4-4: $\Gamma_{D_J^*(300)}$	$(0)^{(0,+)}$ versus the m	ass.	
Tan Xiaoze (HIT)		HECPV201	8 · ZhengZhou		2018-10

Table 4-9: Two-body strong decay widths (MeV) of $D_{I}^{*}(3000)^{+}$ as the $2P(0^{+})$ state.

Discussion

Question1:

Which one of the $2P(1^+)$ doublet should be assigned to $D_J(3000)$ and $D_{sJ}(3040)$?

Thoughts:

From the total width and the result of $D^*\pi$ and D^*K channel, we favour the broad $1^{+'}$ state.

Question2:

The 2*P* state $D_J^*(3000)^0$ has larger phase space and more decay channels than those of 1*P* state $D_0^*(2400)^0$, why we get a narrower full width?

Thoughts:

We consider the reason is the different structures of wave functions.

Figure 4-5: Several examples of wave functions for some states

Summary

- By using BS method, calculate the strong decay width of D^{*}₀(2400)(as 0⁺(1P)), D^{*}_J(3000)(as 0⁺(2P)), D_{sJ}(3040) and D_J(3000)(as 1⁺(2P)), close to the present experiment results;
- For $D_J(3000)$, $D^*\pi$, $D_2^*(2460)\pi$, and $D_2^*(2600)\pi$ are dominant; For $D_{sJ}(3040)$, D^*K , D^*K^* , DK^* are dominant. The broad $2P(1^{+'})$ assignment is more possible.
- For $D_J^*(3000)$, $D\pi$, $D\rho$ and $D_1(2420)\pi$ channels contribute much. And try to explain "why the 2*P* state get narrower width than the 1*P* state" with the structure of BS wave functions.

Thanks !

More details → Phys. Rev. D 97, 054002 (2018). & Eur. Phys. J. C 78, 583 (2018).

Backup

Backup-BS equation

The BS equation of two-body bound state can read in momentum space as

$$S_1^{-1}\chi_P(q)S_2^{-1} = \mathbf{i} \int \frac{\mathrm{d}^4k}{(2\pi)^4} I(P;q,k)\chi_P(k), \tag{6-1}$$

We follow Salpeter to take the instantaneous approximation $I(P; q, k) \approx I(q_{\perp} - k_{\perp})$ The three-dimensional salpeter wave function $\psi(q_{\perp})$ is defined by

$$\psi(q_{\perp}) = i \int \frac{dq_P}{2\pi} \chi_P(q), \quad \chi_P(q) = S_1(p_1) \int \frac{d^3k}{(2\pi)^3} I(q_{\perp} - k_{\perp}) \psi_P(k_{\perp}) S_2(p_2)$$
(6-2)

In this work, we adopt the Cornell potential as the interaction kernel I(r) as follow form

$$I(r) = V_s(r) + V_0 + \gamma_0 \otimes \gamma^0 V_v(r) = \frac{\lambda}{\alpha} (1 - e^{-\alpha r}) + V_0 - \frac{4}{3} \frac{\alpha_s}{r} e^{-\alpha r}, \qquad (6-3)$$

where λ is the string constant, $\alpha_s(r)$ is the running strong coupling constant and V_0 is an adjustable parameter fixed by the meson's mass. In momentum space, the potential can read as

$$I(\vec{q}) = -\left(\frac{\lambda}{\alpha} + V_0\right)(2\pi)^3 \delta^3(\vec{q}) + \frac{\lambda}{\pi^2} \frac{1}{(\vec{q}^2 + \alpha^2)^2} - \frac{2}{3\pi^2} \frac{\alpha_s(\vec{q})}{(\vec{q}^2) + \alpha^2},\tag{6-4}$$

where the coupling constant $\alpha_{-}(\vec{a})$ is defined by: Tan Xiaoze (HIT) HFCPV2018 · ZhengZh

Mass predictions of 1⁺ **state**

State	ours	Ref. ⁶	Ref. ⁷	Ref. ⁸	Ref. ⁹
$D(2^{1}P_{1})$	2933	2940	2932	3045	
$D(2^3P_1)$	2952	2960	3021	2995	
$D_s(2^1P_1)$	3029	3040	3067	3165	2959.0
$D_s(2^3P_1)$	3036	3020	3154	3114	2986.4

Table 6-10: Mass spectrum of the 2P states in the D and D_s families (in units of MeV).

⁶Phys. Rev. D 84, 034006 (2011)
 ⁷Eur. Phys. J. C 66, 197 (2010).
 ⁸Phys. Rev. D 64, 114004 (2001).
 ⁹Phys. Rev. D 90, 014009 (2014).

Parameters backup

In this paper, the masses of constituent quarks that we adopt are listed as follows: $m_u = 0.305 \text{ GeV}, \ m_d = 0.311 \text{ GeV}, \ m_s = 0.50 \text{ GeV}, \ \text{and} \ m_c = 1.62 \text{ GeV}$. Other parameters are $\alpha = 0.060 \text{ GeV}, \ \lambda = 0.210 \text{ GeV}^2, \ \Lambda_{QCD} = 0.270 \text{ GeV}, \ f_{\pi} = 0.1304 \text{ GeV}, \ f_K = 0.1562 \text{ GeV}, \ f_{\eta_1} = 1.07 f_{\pi}, \ f_{\eta_8} = 1.26 f_{\pi}, \ M_{\eta_1} = 0.923 \text{ GeV}, \ \text{and} \ M_{\eta_8} = 0.604 \text{ GeV}.$ The masses of other involved mesons are shown in Table 6-11.

Table 6-11: Masses of involved mesons (GeV).

$m_{D_0^*(2400)^0} = 2.318$	$m_{D_0^*(2400)^+} = 2.351$	$m_{D_J^*(3000)^{(0,+)}} = 3.008$	$m_{D_s^+} = 1.968$
$m_{D_1(2420)^0} = 2.421$	$m_{D_1(2420)^+} = 2.423$	$m_{D_1(2430)^{(0,+)}} = 2.427$	$m_{D_s^{*+}} = 2.112$

Table 6-12: $D_0^*(2400)^{0,+}$ strong decay widths (MeV). Ref. adopts Chiral Quark Model, Ref. adopts the ³*P*₀ Model and Ref. adopts the Pseudoscalar Emission Model.

Chanel		Ours	Ref. zhaoqiang2008	Ref. Close2005	Ref. Godfrey2005	Exp. PDG2016
$D^*_0(2400)^0 \rightarrow$	$D^{+}\pi^{-}$ $D^{0}\pi^{0}$	151.5 74.8	266	283	277	267 ± 40
$D_0^*(2400)^+ \rightarrow$	$D^+\pi^0$ $D^0\pi^+$	81.6 164.3				230 ± 17

Experiment

Belle Collaboration results

 D_0^* life time is short, more experiment through $B^- \to D_0^* (2400)^0 \pi^- \to D^+ \pi^- \pi^-$ channel. In 2004, the Belle collaboration confirmed $D_0^* \notin D_1$ in *B* meson decay:

 $M_{D_0^*(2400)^0} = (2308 \pm 17 \pm 15 \pm 28) \text{MeV}$ $\Gamma_{D_0^*(2400)^0} = (276 \pm 21 \pm 18 \pm 60) \text{MeV}$

Experiment

LHCb experiment results

In 2013, the LHCb observed several excited state of *D* mesons, including several new resonances around 3 GeV. $D_J(3000)$ and $D_J^*(3000)$ was considered to be the 2*P* excited state of *P*-wave $J^P = 1^+$ and $J^P = 0^+$:

$$M_{D_J(3000)} = (2971.8 \pm 8.7) \text{MeV}$$

$$\Gamma_{D_J(3000)} = (188.1 \pm 44.8) \text{MeV}$$

$$M_{D_J^*(3000)} = (3008.1 \pm 4.0) \text{MeV}$$

$$\Gamma_{D_J^*(3000)} = (110.5 \pm 11.5) \text{MeV}$$

Pseudo-vector *D* **meson positive wave function**

$$\varphi_{1^{+-}}^{++}(q_{\perp}) = q_{\perp} \cdot \epsilon \left[D_1(q_{\perp}) + \frac{p''}{M''} D_2(q_{\perp}) + \frac{q_{\perp}}{M''} D_3(q_{\perp}) + \frac{p'' q_{\perp}}{M''^2} D_4(q_{\perp}) \right] \gamma_5 \tag{6-7}$$

In the case when heavy-light 1⁺ state is involved, if we use the *S*-*L* coupling, the ${}^{3}P_{1}$ and ${}^{1}P_{1}$ states cannot describe the physical states. Within the heavy quark limit($m_{Q} \rightarrow \infty$), its spin decouples and the properties of the heavy-light 1⁺ state are determined by those of the light quarks. So *j*-*j* coupling should be used instead. The orbital angular momentum \vec{L} couples with the light quark spin \vec{s}_{q} , which is $\vec{j}_{l} = \vec{L} + \vec{s}_{q}$. Then 1⁺ state can be grouped into a doublet by the total angular momentum of the light quark($|j_{l} = 1/2$) and $|j_{l} = 3/2$).^{*ab*}:

$$\begin{pmatrix} |J^{P} = 1^{+}, j_{l} = 1/2 \rangle \\ |J^{P} = 1^{+}, j_{l} = 3/2 \rangle \end{pmatrix} = \begin{pmatrix} -\sin\theta & \cos\theta \\ \cos\theta & \sin\theta \end{pmatrix} \begin{pmatrix} |^{1}P_{1} \rangle \\ |^{3}P_{1} \rangle \end{pmatrix}$$
(6-8)

Mixing angle(in heavy quark limit):

$$\theta = \arctan \sqrt{1/2} \approx 35.3^{\circ}$$

^aMatsuki, Progress of Theoretical Physics 2010,(124.285)

b Barnes, Physical Review D 2005, 72(054026)