From inflation to cosmological EWPT with a complex scalar singlet

Speaker: Wei Cheng

Institution: Department of physics, Chongqing University Email: Chengw@cqu.edu.cn

Based on latest work with Ligong Bian

Phys.Rev. D98 (2018), 023524

2018.10 Zhengzhou

CONTENTS

Introduction

Model

Inflations Results Phase transition Conclusion Dark matter

Problem and Solving

Horizon and flatness

Baryon asymmetry

Both Big bang Nucleosynthesis and measurements of CMB gives:

 $\frac{CMB}{Inflation} \eta_B = \frac{2}{3}$

01

Rotation curve of a disc galaxy Gravitational lens
Dark matter

Introduction

The Standard Model should be extension for the three cases!!!

Tommi Tenkanen, Kimmo Tuominen, Ville Vaskonen J. Cosmol.Astropart. Phys. 09 (2016) 037.

> Real scalar singlet +Fermion

Complex scalar singlet Model

The direct detection bounds from XENON1T yield null exclusions!!!

$$\begin{aligned} & \text{Scalar potential} \\ V_0(H,\mathcal{S}) &= \begin{bmatrix} \text{Standard model} \\ -\mu_h^2 |H|^2 + \lambda_h |H|^4 \\ \end{bmatrix} \\ & \text{Scalar partical} \\ \mu_s^2 |S|^2 - \begin{bmatrix} 1 \\ 2\mu_b^2 S^2 + h.c. \end{bmatrix} + \lambda_s |S|^4 \\ +\lambda_s |S|^4 \\ +\lambda_h s |H|^2 |S|^2 \\ \end{bmatrix} \\ & \text{Prescription} \\ & \text{Prescription} \\ H^T &= (0, h)/\sqrt{2} \quad S &= (s + IA)/\sqrt{2} \\ & V_0(h, s, A) &= \frac{\lambda_h h^4}{4} + \frac{1}{4} \lambda_{hs} h^2 A^2 - \frac{\mu_h^2 h^2}{2} + \frac{1}{4} \lambda_{hs} h^2 s^2 + \frac{\lambda_s A^4}{4} - \frac{\mu_s^2 A^2}{2} + \frac{\mu_b^2 A^2}{2} + \frac{\lambda_s s^4}{4} + \frac{1}{2} \lambda_s s^2 A^2 - \frac{\mu_b^2 s^2}{2} - \frac{\mu_b^2 s^2}{2} \\ & \text{DM: } m_A &= \sqrt{2} \mu_b \end{aligned} \end{aligned}$$

$$\frac{dV_0(h, s, A)}{dh}|_{h=v} = 0,$$

$$\frac{dV_0(h, s, A)}{ds}|_{s=v_s} = 0.$$

$$\mu_h^2 = \lambda_h v^2 + \lambda_{hs} v_s^2/2,$$

$$\mu_s^2 = -\mu_b^2 + \lambda_{hs} v^2/2 + \lambda_s v_s^2.$$

Free parameters

$$\mathcal{M}^{2} = \begin{pmatrix} 2v^{2}\lambda_{h} & vv_{s}\lambda_{hs} \\ vv_{s}\lambda_{hs} & 2v_{s}^{2}\lambda_{s} \end{pmatrix}$$

$$R = ((\cos\theta, \sin\theta), (-\sin\theta, \cos\theta))$$

$$\tan 2\theta = -\lambda_{hs}vv_{s}/(\lambda_{h}v^{2} - \lambda_{s}v_{s}^{2})$$

$$\begin{pmatrix} h_{1} \\ h_{2} \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} h \\ s \end{pmatrix}$$

$$m_{h_{1},h_{2}}^{2} = \lambda_{h}v^{2} + \lambda_{s}v_{s}^{2} \mp \frac{\lambda_{s}v_{s}^{2} - \lambda_{h}v^{2}}{\cos 2\theta}$$

$$k_{h} = \frac{\cos(2\theta)(m_{h_{1}}^{2} - m_{h_{1}}^{2}) + m_{h_{1}}^{2} + m_{h_{2}}^{2}}{4v^{2}}$$

$$Parameters: v_{s}, m_{h_{2}}^{2}, \mu_{b}$$

$$\lambda_{h} = \frac{\cos(2\theta)(m_{h_{2}}^{2} - m_{h_{1}}^{2}) + m_{h_{1}}^{2} + m_{h_{2}}^{2}}{4v^{2}}$$

$$k_{h} = \frac{\cos(2\theta)(m_{h_{2}}^{2} - m_{h_{1}}^{2}) + m_{h_{1}}^{2} + m_{h_{2}}^{2}}{4v^{2}}$$

$$k_{h} = \frac{\cos(2\theta)(m_{h_{2}}^{2} - m_{h_{1}}^{2}) + m_{h_{1}}^{2} + m_{h_{2}}^{2}}{4v^{2}}$$

$$k_{h} = \frac{\cos(2\theta)(m_{h_{2}}^{2} - m_{h_{1}}^{2}) + m_{h_{1}}^{2} + m_{h_{2}}^{2}}{4v^{2}}$$

$$k_{h} = \frac{\cos(2\theta)(m_{h_{2}}^{2} - m_{h_{1}}^{2}) + m_{h_{1}}^{2} + m_{h_{2}}^{2}}{4v^{2}}$$

$$k_{h} = \frac{\cos(2\theta)(m_{h_{2}}^{2} - m_{h_{1}}^{2}) + m_{h_{1}}^{2} + m_{h_{2}}^{2}}{4v^{2}}$$

$$k_{h} = \frac{\cos(2\theta)(m_{h_{2}}^{2} - m_{h_{1}}^{2}) + m_{h_{1}}^{2} + m_{h_{2}}^{2}}{4v^{2}}$$

$$k_{h} = \frac{\cos(2\theta)(m_{h_{2}}^{2} - m_{h_{1}}^{2}) + m_{h_{1}}^{2} + m_{h_{2}}^{2}}{\theta \approx 0.2},$$

$$k_{h} = \frac{\cos(2\theta)(m_{h_{2}}^{2} - m_{h_{1}}^{2}) + m_{h_{1}}^{2} + m_{h_{2}}^{2}}{\theta \approx 0.2},$$

$$k_{h} = \frac{\cos(2\theta)(m_{h_{2}}^{2} - m_{h_{1}}^{2}) + m_{h_{1}}^{2} + m_{h_{2}}^{2}}{\theta \approx 0.2},$$

$$k_{h} = \frac{\cos(2\theta)(m_{h_{2}}^{2} - m_{h_{1}}^{2}) + m_{h_{1}}^{2} + m_{h_{2}}^{2}}{\theta \approx 0.2},$$

$$k_{h} = \frac{\cos(2\theta)(m_{h_{2}}^{2} - m_{h_{1}}^{2}) + m_{h_{1}}^{2} + m_{h_{2}}^{2}}{\theta \approx 0.2},$$

$$k_{h} = \frac{\cos(2\theta)(m_{h_{2}}^{2} - m_{h_{1}}^{2})}{\theta \approx 0.2},$$

$$k_{h} = \frac{\cos(2\theta)(m_{h_{2}}^{2} - m_{h_{$$

Inflations

Slow-roll inflation

$$rac{1}{2}\dot{\phi}^2 \ll V(\phi) \qquad |\ddot{\phi}| \ll \mathcal{H}|\dot{\phi}|$$

Inflations Phase transition Dark matter The friedman Equation: $3M_P^2\mathcal{H}^2 = \frac{1}{2}\dot{\phi}^2 + V(\phi),$ $\mathcal{H} \equiv \dot{a}/a$ The motion equation of field: $\ddot{\phi} + 3\mathcal{H}\dot{\phi} + \frac{\partial V(\phi)}{\partial \phi} = 0.$ Slow-roll parameters:

$$\epsilon(\chi) = \frac{M_{\rm p}^2}{2} \left(\frac{dU/d\chi}{U(\chi)} \right)^2 \ll 1 \quad \eta(\chi) = M_{\rm p}^2 \left(\frac{d^2 U/d\chi^2}{U(\chi)} \right) \ll 1$$

e-folding number:
$$N_{\rm e} = \int_{\chi_{\rm end}}^{\chi_{\rm in}} d\chi \frac{1}{M_{\rm p}\sqrt{2\epsilon}} = 60$$

Inflations

0.70

0.65

0.50

03

0.20

The finite temperature effective potential:

Phase transition

03

Inflations

Dark matter

The tree-level direct detection scattering amplitude:

03

Inflations

Phase transition Dark matter

Results (Real scalar singlet case)

Results Conclusion

The direct detection bounds from XENON1T yield null exclusions ! !

Conclusion

Results Conclusion

	Inflation	SFOEWPT	DM
The complex singlet scalar with the global U(1) being broken	<u>.</u>		
SM +Real singlet scalar	<u></u>		
	2		