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Introduction

The study of heavy flavor physics Is important and active!

1. Finding new physics.
2. Testing QCD and factorizations.
3. CP violation.

{Rare B decays at LHCb) Z=—I5
{CPV in B decays at LHCb) EK4T
{Theoretical Overview of B Physics) Z#T5%

{Recent Belle & Belle-1l Results) 3B
{BESIIl Recent Results) F KB
{Highlights of theories in charm physics) Tt&Ft



Introduction

1
MIH) = [ daTia(Q. ps)on (v )
0
* The LCDAs are essential for the studying of exclusive
processes and hadron structures.

* LCDAs cannot be evaluated in perturbation theory.

* Lattice QCD can be utilized to calculate only the
lowest moments of LCDAS.
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Large-momentum effective field theory: LaMET
LaMET is a theory allowing ab initio computation of
light-cone physics on a Euclidean lattice!

Step 1: Constructing lattice operators and evaluate the ME
Step 2: Lattice calculations

Step 3: Extracting the light-cone physics from the lattice ME



LaMET

* (alculate the equal-time correlators (quasi quantities) instead
of the light-cone ones.

* The matrix elements defined by these equal-time correlators
can be simulated on the lattice.

* The quasi observables can be factorized as the convolution of
a matching coefficient and the corresponding light-cone
observable.
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LCDA

Laittlce calculation —— Quasi=DA > Normal-LCDA

The matching coefficients have been calculated in dimensional

regularization and transverse momentum cutoff schemes.
J.-H. Zhang, J.-W. C, X_Ji, Lu. J, H.-W. L Phys.Rev. D 2017
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LCDA

These schemes are not suitable for a nonperturbative
renormalization of the quasi-PDF on the lattice.

The RI/MOM (regularization independent momentum
subtraction) scheme was proposed to serve this
PUrpose.

The perturbative matching coefficient that converts
quasi-DA in the RI/MOM scheme to LCDA in MS
scheme is still not available yet.



Distribution amplitudes

The LCDAs are defined by the matrix elements of non-local gauge invariant quark
bilinear operators, in which the two fermion fields are separated in the n direction.

Oy (£7) = (£ )TW(£,0)2(0),

Fourier transformation

dE~ . o~ p+
Of(a) = [ e =€ P Oh(),

Take Iongitudinally polarized vector for instance,
fv et ol (@, 1) = (V, PO, ())0),
* %1 Al
fVFE = <V7 P, e ’OV(O)‘())

So,
(V, P, e*|Oy,()[0)
(V, P, e*|Oy,(0)]0)
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Distribution amplitudes

Similarly, for Quasi-DAs
OF(Z) P(2)TW (2,0)3(0),
fvei—-oy (x, P.) = (V, P, " |0y, (x)|0),

= (V, P,e*|O(0)]0)

ZP

So, we have

O (z, 1) =

(V. P,e|OF (2)10)
(V, P, O} (0)[0)

The factorization formula, ~ - -
¢R(F7 Z, P ) )uRapR)

1
p* p*
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Renormalization

The RI/MOM renormalization factor Z is calculated nonperturbatively on the lattice by
imposing the condition that the renormalized loop corrections in the matrix element of the
spatial correlator in an off-shell quark state vanish at subtraction {s} scales,

Z(T,z,a,{pn}) = (P'|O(T, z,a)[p")
v 2y Uy ] o <pr‘6(f‘rzja,)‘p”>tme

{1}
where {i} = {p* = —u3,p* = pi}.

The UV divergence of the quasi-DA depends on the operator itself, not the external states.

We have the freedom to choose external states as long as the Z calculated from lattice can
remove the UV divergent part of the bare matrix element.

One simple choice: renormalization factor for the quasi-PDF.

(p|O(T, 2, a)|p)
<p‘O(Fa 2 (1,) |p>t1"00 {1}

ZS(Fa ZyQ, ﬂRap?{) —



Renormalization

The bare correlator for the meson on the lattice,
h(T,z, P? a) = (P,e|lOT, z,a)|0)
which is renormalized as
h’R (Fa Za PZ:! #Rap?%)
= lim Z;I(F,zja,pR,p%)%(sz,Pz,a) :

a—0

The renormalized quasi-DA,

¢r(I',x, P*, iR, p)
:PZ/% izz P? hR(Faz7 szﬂRasz)

(& e~
2m hR(Fa O)MR)

Similarly, the renormalized LCDA,

¢R(F7 Y, M)

_P+/CP€__e_iyg_P+ hR(F7€_>}UJ)
2T hR(P,O,M) .




One loop matching coefficient

The renormalized quasi-DA in the RI/MOM scheme can be matched to LCDA through
the factorization formula,

@R(F,I, Pz? #Rap%)

1
PZ PZ
2/ dy Cr (w Y, T, — —) oI, y, )
0 & pR

{ M> Adep
+ O \(Pz)Q’ (Pz)2) ?

Cr (@, y) ltree= 0(z —y) where r = H-:zrg/(Pf*ﬂ)Q-

The bare matching coefficient

cy (r z,y, P—) = ¢ (D,z,y, P*) — ¢D(0, 2, y, )
7]



One loop matching coefficient

We have calculated T' = %45, v, v, for pseudoscalar, longitudinally polarized vector
and transversely polarized vector meson LCDAs;

I' = v*vs5, 7", v*v. for pseudoscalar, longitudinally polarized vector and transversely
polarized vector meson quasi-DAs, respectively.

Since we take the on-shell limit to obtain the bare matching coefficient, c}g”.

((Hi(D,z,y)| 4 r<0<y

C’ (F;ry E) _ Cp | (L 2.y, P/l 0<z<y
R 2m Hy(I',1 -2, 1 -y, P*/p)],(,) y<z <1
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One loop matching coefficient

Determine the counter term of the quasi-DA in RI/MOM scheme.

Using the renormalization factor for the quasi-PDF to renormalize the quais-DA

P* P* P*
C(l) (F ‘ryr)— gV (F, . (:ry)+1,'r)
PR Pr Pr

+(y)

The @, has been calculated in arXiv:1807.06566 [hep-lat]

Finally, we have the one-loop matching coefficient C in factorization formula,

Pz P* P, Pz
Cr (af; Y, T ) =d0(z—y)+ CJ(BU (F, X, 1, ) — C’él% (F, T, Y, T, z) + O(cyrj).
M pR M Pr



Summary

® The quasi-DA can be renormalized in the RI/MOM scheme
with the same renormalization factor that has already been
calculated for the quasi-PDF case.

® Derive the one-loop matching coefficient that matches
RI/MOM quasi-DA in the Landau gauge to MS LCDA within
the framework of LaMET.

® Our results include the matching coefficients for pseudoscalar,
longitudinally polarized vector, and transversely polarized
vector DAs.

® These matching coefficients are ready to be applied to
extracting the LCDAs from the lattice matrix elements of quasi-
DAs.
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(PlO(v#75,0)[0) = i fp P*,
(P, e)|O(*,0)[0) = fyf Myelt,
(PoeL|O(0,0)[0) = ifi (€ PY — € P¥)

Oy (£7) = %(£7)TW(£7,0)4(0), (1)

where I' = y7+¢ for transversely polarized vector meson, and I' = 47 for longitudinally polarized vector meson.
W(£~,0) is the Wilson line with the end points (0,£7,0,) and (0,0,0,). In LCDAs the Wilson line is light-like

W(E,0) = Pexp [_ io. f_ " A(An)d,\], (2)

where P denotes that the exponential is path ordered. We also need the Fourier transformation of these operators,

which are denoted by O, (z)

0% (2) = / £ ol ), 3)
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FIG. 1: Feynman diagrams for LCDAs and quasi-DAs at one loop level. The double line denotes the Wilson line.



to study the inverse moment. The inverse moment of the LCDAs is defined by

(), = [ @

The Gegenbauer moments are also commonly used, which are defined by

_ 2(2n+3) Lo (3/2) ¢«
(an)r = 32 1)1 L) fﬁ dzxop(x)Cy7 (22 —1).

In order to combine the “real” and “virtual” contribu-
tions (defined in Ref. [? |) in a compact form at one-loop
level, we introduce a plus function [h(z,y)], ,, which is
defined as

[ dalhe. )l 9() = [ do hialota) - 9] (22)



Quark Generalized Parton Distributions
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@ Depend on quark momentum fraction z, skewness £ and nucleon
momentum transfer ¢.

Figure: The parton interpretation of GPDs in the three a-intervals [—1, —&], [—£,&] and
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Quark Generalized Parton Distributions

The momentum fraction z € [—1, 1], which falls into the following three
regions:

@ z € [—1,—£|, both momentum fractions z+ £ and z — £ are negative:
emission and reabsorption of antiquarks with respective momentum fractions
E—z and —£—u.

@ zc€[—£,&|,onehas z+ & >0 but x— & < 0: a quark with momentum
fraction z+ £ and an antiquark with £é—x emitted from the initial proton.

@ z € [£ 1] both z+ £ and x — £ are positive: emission and reabsorption of a
quark.

The first and third case are commonly referred to as DGLAP regions and the
second as ERBL region.



Large Momentum Effective Theory (LaMET)

Relating parton physics observables to equal-time correlators in a large
momentum nucleon states (quasi-observables).

@ Light-cone observables: p, — oo, then A — oc.
Quasi observables: A — oo, then p, — oo.
These two limits do not commute!

@ They have same IR but different UV behaviours, while the UV
difference is controllable and calculable.

Factorization formula between light-cone and quasi GPDs:

L r & W M? A%}CD
t 2] — _Z R H y ata O
H(z, &, t, p,) /1‘ | H(y " pz) (4, &5t 1) + (p§ P2 ).




—

M? Agep

+0 (Pz)?’ (Pz)?

where O (M?/(P#)?, A%CD/(P"')Q) are mass and higher-
twist corrections. Since the choice of I" corresponds to
a unique T, we suppress the label T' of the matching co-
efficient Cr. On the other hand, the renormalized local
operators in Egs. (3) and (11) are related by

where Z(T,T, yu, i) contains kinematic factors in Eq. (5)
and the scheme conversion factor when LCDA and quasi-
DA are renormalized in different schemes. Combining
Egs. (13) and (14), we have the matching formula be-
tween quasi-DA and LCDA [21, 23|

- ! i P*\
(T, z, P?, 1) =/ dy Cr (my E ?) o(T,y, 1)

M?  Acp
+ O ((Pz)Q’ (Pz)2) (15)

where Cr = 7 51" is still perturbatively calculable.

1 ~
- ~ P
}-(F,LB,PZ,,'_L)=/ dyCI‘ (mﬁy:«g&_) F(F,yﬂ)
0

(13)



Order of limits

Thus the difference between the matrix
elements o0 and O is the order of limits:

o: P — oo, followed by UV cut-off
O: UV cut-off imposed first, followed by P — o

This is the starndard set-up for effective field

theory, such as HQET. The generic argument for
factorization follow through. Hence we have
large-momentum effective field theory: LaMET.

Perturbative proof case by case.



A Euclidean quasi-distribution

= Consider space correlation in a large momentum

P in the z-direction. 0
i, ) = [ e Py Ny -

X exp (—ig /: d.‘:'A;(z’)) (0)|P)
Jo

* Quark fields separated along the z-direction
* The gauge-link along the z-direction
* The matrix element depends on the momentum P.



Taking the limit P-> oo first

= After renormalizing all the UV divergences, one has
the standard quark distribution!

* One can prove this using the standard OPE
* One can also see this by writing

|P>=U(A(p)) | p=0>
and applying the boost operator on the gauge link.

N
\

{3




Step 1: Constructing lattice
operators and evaluate the ME

= Construct a frame-dependent, Euclidean quasi-
operator “0”.

= In the IMF limit, O becomes a light-cone (light-
front, parton) operator o.

0, =AY - o=AA"

There are many operators leading to the same light-
cone operator.

0,=4° - o=A
O;=aA’+ (1 —a)A®> - o=AA"



Step 2: lattice calculations

= Compute the matrix element of O on a lattice

* |t will depend on the momentum of the hadron
P, O(P,a).

= |t also depends on the details of the lattice
actions (UV specifics).



Step 3: Extracting the light-cone
physics from the lattice ME

Extract light-front physics o(u) from O(P,a) at
large P through a EFT matching condition or

factorization theorem
04
O(P,a) = Z(—)o(u) + P4 + -

Where Z is perturbatively calculable.

Infrared physics of O(P,a) is entirely captured by
the parton physics o(p). In particular, it contains
all the collinear divergence when P gets large.









