

Weak Decays of Doubly Heavy Baryons $\mathcal{B}_{cc} \to \mathcal{B}_{c} V$

arXiv:1810.00541

Inner Mongolia University

In collaboration with: 贺蓓 李润辉

October 27, 2018 HFCPV

OUTLINE

1 Introduction

2 Framework and Calculations

3 Results and Discussions

4 Summary

1 Introduction

The doubly charm baryons

- Two SU(4) baryon 20-plets with $J^p = \frac{1}{2}^+$ and $J^p = \frac{3}{2}^+$, each contains a SU(3) triplet with two charm quarks: Ξ_{cc}^{++} (ccu) Ξ_{cc}^+ (ccd) Ω_{cc}^+ (ccs).
- $J^{p} = \frac{3}{2}^{+}$ expected to decay to $J^{p} = \frac{1}{2}^{+}$ states via strong/electromagnetic interaction. • $J^{p} = \frac{1}{2}^{+}$ states decay weakly with a quark transformed to lighter quarks.

1 Introduction

- > SELEX observed Ξ_{cc}^+ in $\Xi_{cc}^+ \rightarrow \Lambda_c^+ K^- \pi^+$ and $\Xi_{cc}^+ \rightarrow pD^+ K^-$ decay
- > LHCb observed the Ξ_{cc}^{++} state in the $\Lambda_c^+ K^- \pi^+ \pi^+$ decay

1 Introduction

> Theoretical work that proposed the discovery channel

Chinese Physics C Vol. 42, No. 5 (2018) 051001

Discovery potentials of doubly charmed baryons^{*}

Fu-Sheng Yu(于福升)^{1,2;1)} Hua-Yu Jiang(蒋华玉)^{1,2} Run-Hui Li(李润辉)³ Cai-Dian Lü(吕才典)^{4,5;2)} Wei Wang(王伟)^{6;3)} Zhen-Xing Zhao(赵振兴)⁶

 ¹ School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
 ² Research Center for Hadron and CSR Physics, Lanzhou University and Institute of Modern Physics of Chinese Academy of Sciences, Lanzhou 730000, China
 ³ School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
 ⁴ Institute of High Energy Physics, Chinese Academy of Sciences, YuQuanLu 19B, Beijing 100049, China
 ⁵ School of Physics, University of Chinese Academy of Sciences, YuQuanLu 19A, Beijing 100049, China
 ⁶ INPAC, Shanghai Key Laboratory for Particle Physics and Cosmology, School of Physics and Astronomy, Shanghai Jiao-Tong University, Shanghai 200240, China

Abstract: The existence of doubly heavy flavor baryons has not been well established experimentally so far. In this Letter we systematically investigate the weak decays of the doubly charmed baryons, Ξ_{cc}^{++} and Ξ_{cc}^{+} , which should be helpful for experimental searches for these particles. The long-distance contributions are first studied in the doubly heavy baryon decays, and found to be significantly enhanced. Comparing all the processes, $\underline{\Xi}_{cc}^{++} \rightarrow \Lambda_{e}^{+}K^{-}\pi^{+}\pi^{+}$ and $\Xi_{c}^{+}\pi^{+}$ are the most favorable decay modes for experiments to search for doubly heavy baryons.

A phenomenological model is employed
 Fu-Shenng Yu's report
 Under this framework we calculated the *BR* and Γ of *B_{cc}* → *B_cV*

2 Framework and Calculations

Effective Hamiltonian

We focus on weak decays induced by the charge current $c \rightarrow s/d$. The contributing low energy effective Hamiltonian is given by

$$H_{eff} = \frac{G_F}{\sqrt{2}} \sum_{q=d,s} V_{cq}^* V_{uD} \Big[C_1(\mu) O_1^q(\mu) + C_2(\mu) O_2^q(\mu) \Big] + h.c.$$

$$O_1^q = (\bar{u}_{\alpha} D_{\beta})_{V-A} (\bar{q}_{\beta} c_{\alpha})_{V-A}, \quad O_2^q = (\bar{u}_{\alpha} D_{\alpha})_{V-A} (\bar{q}_{\beta} c_{\beta})_{V-A}$$

2 Framework and Calculations

Topological Diagrams

Both short distance and long distance contributions are contained.

7

Short Distance Amplitudes

Long Distance Contributions

The long distance contributions are modeled as final-state interactions (FSIs) and calculated under the one-particle-exchange model

H. Y. Cheng, C. K. Chua and A. Soni, Phys. Rev. D 71, 014030 (2005)

Long Distance Contributions

We adopt Optical theorem to calculate the imaginary part of triangle diagram, treat the intermediate particles 2 and 3 as on-shell. The absorptive part :

$$\mathcal{A}bs \, M(p_1 \to p_5 p_6) = \frac{1}{2} \int \frac{\mathrm{d}^3 p_2 \mathrm{d}^3 p_3}{(2\pi)^6 4 E_2 E_3} (2\pi)^4 \delta^4(p_5 + p_6 - p_2 - p_3) M(p_1 \to p_2 p_3) T^*(p_5 p_6 \to p_2 p_3).$$

The dispersive part can be calculated via the dispersion relation:

$$\mathcal{D}is\,A(m_1^2) = \frac{1}{\pi} \int_s^\infty \frac{\mathcal{A}bs\,A(s')}{s' - m_1^2} \mathrm{d}s',$$

We assume the absorptive part is dominating and neglect the dispersive part.

H. Y. Cheng, C. K. Chua and A. Soni, Phys. Rev. D 71, 014030 (2005)

Long Distance Contributions

To proceed, the Lagrangian for the strong couplings is necessary:

$$\begin{split} \mathcal{L}_{\pi h h} = & g_{\pi \mathcal{B}_{6} \mathcal{B}_{6}} Tr[\bar{\mathcal{B}}_{6}i\gamma_{5}\Pi \mathcal{B}_{6}] + g_{\pi \mathcal{B}_{3} \mathcal{B}_{3}} Tr[\bar{\mathcal{B}}_{3}i\gamma_{5}\Pi \mathcal{B}_{3}] + \{g_{\pi \mathcal{B}_{6} \mathcal{B}_{3}} Tr[\bar{\mathcal{B}}_{6}i\gamma_{5}\Pi \mathcal{B}_{3}] + h.c.\}, \\ \mathcal{L}_{\rho h h} = & f_{1\rho \mathcal{B}_{6} \mathcal{B}_{6}} Tr[\bar{\mathcal{B}}_{6}\gamma_{\mu}V^{\mu}\mathcal{B}_{6}] + \frac{f_{2\rho \mathcal{B}_{6} \mathcal{B}_{6}}}{2m_{6}} Tr[\bar{\mathcal{B}}_{6}\sigma_{\mu\nu}\partial^{\mu}V^{\nu}\mathcal{B}_{6}] \\ & + f_{1\rho \mathcal{B}_{3} \mathcal{B}_{3}} Tr[\bar{\mathcal{B}}_{3}\gamma_{\mu}V^{\mu}\mathcal{B}_{3}] + \frac{f_{2\rho \mathcal{B}_{3} \mathcal{B}_{3}}}{2m_{3}} Tr[\bar{\mathcal{B}}_{3}\sigma_{\mu\nu}\partial^{\mu}V^{\nu}\mathcal{B}_{3}] \\ & + \{f_{1\rho \mathcal{B}_{6} \mathcal{B}_{3}} Tr[\bar{\mathcal{B}}_{6}\gamma_{\mu}V^{\mu}\mathcal{B}_{3}] + \frac{f_{2\rho \mathcal{B}_{6} \mathcal{B}_{3}}}{m_{6}+m_{3}} Tr[\bar{\mathcal{B}}_{6}\sigma_{\mu\nu}\partial^{\mu}V^{\nu}\mathcal{B}_{3}] + h.c.\}, \\ \mathcal{L}_{\rho \pi \pi} = \frac{ig_{\rho \pi \pi}}{\sqrt{2}} Tr[V^{\mu}[\Pi,\partial_{\mu}\Pi]], \\ \mathcal{L}_{\rho \rho \rho} = \frac{ig_{\rho \rho \rho}}{\sqrt{2}} Tr[(\partial_{\nu}V_{\mu} - \partial_{\mu}V_{\nu})V^{\mu}V^{\nu}] = \frac{ig_{\rho \rho \rho}}{\sqrt{2}} Tr[(\partial_{\nu}V_{\mu}V^{\mu} - V^{\mu}\partial_{\nu}V_{\mu})V^{\nu}], \end{split}$$

> An Example $\Xi_{cc}^+ \rightarrow \Xi_c^+ \rho^0$: Short Distance Contributions

$$C_{\rm SD}(\Xi_{cc}^{+} \to \Xi_{c}^{+} \rho^{0}) = \frac{G_{F}}{\sqrt{2}} V_{cs}^{*} V_{ud} a_{2} f_{\rho} \epsilon_{\mu}^{*} \bar{u}(p_{6}, s_{z}') \left[\left(f_{1}(m_{\rho}^{2}) - \frac{m_{\Xi_{cc}^{+}} + m_{\Xi_{c}^{+}}}{m_{\Xi_{cc}^{+}}} f_{2}(m_{\rho}^{2}) \right) \gamma^{\mu} + \frac{2}{m_{\Xi_{cc}^{+}}} f_{2}(m_{\rho}^{2}) p_{6}^{\mu} - \left(g_{1}(m_{\rho}^{2}) + \frac{m_{\Xi_{cc}^{+}} - m_{\Xi_{c}^{+}}}{m_{\Xi_{cc}^{+}}} g_{2}(m_{\rho}^{2}) \right) \gamma^{\mu} \gamma_{5} - \frac{2}{m_{\Xi_{cc}^{+}}} g_{2}(m_{\rho}^{2}) p_{6}^{\mu} \gamma_{5} \right] u(p_{1}, s_{z}) ,$$

> An Example $\Xi_{cc}^{+} \rightarrow \Xi_{c}^{+} \rho^{0}$: long Distance Contributions

> An Example $\Xi_{cc}^+ \rightarrow \Xi_c^+ \rho^0$: long Distance Contributions

> An Example $\Xi_{c}^{+} \rightarrow \Xi_{c}^{+} \rho^{0}$: long Distance Contributions

(a1)

> An Example $\Xi_{cc}^+ \rightarrow \Xi_{c}^+ \rho^0$: long Distance Contributions

 $u\overline{u}$ with an isospin factor $\frac{1}{\sqrt{2}}$, while $d\overline{d}$ with $-\frac{1}{\sqrt{2}}$

> An Example $\Xi_{cc}^+ \rightarrow \Xi_c^+ \rho^0$: long Distance Contributions

> An Example $\Xi_{cc}^+ \rightarrow \Xi_c^+ \rho^0$: long Distance Contributions

$$\mathcal{A}bs \ M_{c}(\pi^{+};\Xi_{c}^{0};\Xi_{c}^{0}) = -\frac{i}{\sqrt{2}} \int \frac{|\vec{p_{2}}|sin\theta d\theta d\varphi}{32\pi^{2}m_{\Xi_{cc}^{+}}} \frac{G_{F}}{\sqrt{2}} V_{cs}^{*} V_{ud} a_{1} f_{\pi} g_{\Xi_{c}^{+}\Xi_{c}^{0}\pi^{+}} \frac{F^{2}(t,m_{\Xi_{c}^{0}})}{t-m_{\Xi_{c}^{0}}^{2}} \epsilon_{6}^{*\nu} \\ \times \overline{u}(p_{5},s_{z}') \gamma_{5}(\not{p}_{4}+m_{\Xi_{c}^{0}}) \left(f_{1\Xi_{c}^{0}\Xi_{c}^{0}\rho^{0}}\gamma_{\nu}+i\frac{f_{2\Xi_{c}^{0}\Xi_{c}^{0}}\rho^{0}}{2m_{\Xi_{c}^{0}}}\sigma_{\mu\nu}p_{6}^{\mu}\right) \\ (\not{p}_{3}+m_{\Xi_{c}^{0}}) \left[(m_{\Xi_{cc}^{+}}-m_{\Xi_{c}^{0}})f_{1}(m_{\pi}^{2})+(m_{\Xi_{cc}^{+}}+m_{\Xi_{c}^{0}})g_{1}(m_{\pi}^{2})\gamma_{5}\right]u(p_{1},s_{z}),$$

where

$$F(t,m) = \left(\frac{\Lambda^2 - m^2}{\Lambda^2 - t}\right)^n, \quad \Lambda = m + \eta \Lambda_{\rm QCD} \longrightarrow \begin{array}{c} \text{Cheng,Chua,Soni,PRD} \\ 71,014030(2005) \end{array}$$

> An Example
$$\Xi_{cc}^{+} \rightarrow \Xi_{c}^{+} \rho^{0}$$

The amplitude of $\Xi_{cc}^{+} \rightarrow \Xi_{c}^{+} \rho^{0}$ is expressed by

$$\begin{split} \mathcal{A}(\Xi_{cc}^{+}\to\Xi_{c}^{+}\rho^{0}) &= \quad C_{\mathrm{SD}}(\Xi_{cc}\to\Xi_{c}^{+}\rho^{0}) + i \big[\mathcal{A}bs \, M_{c}(\pi^{+};\Xi_{c}^{0};\Xi_{c}^{0}) + \mathcal{A}bs \, M_{c}(\rho^{+};\Xi_{c}^{0};\Xi_{c}^{0}) \\ &+ \mathcal{A}bs \, M_{c}(\pi^{+};\Xi_{c}^{0};\Xi_{c}^{0}) + \mathcal{A}bs \, M_{c}(\rho^{+};\Xi_{c}^{0};\Xi_{c}^{0}) + \mathcal{A}bs \, M_{c}(\pi^{+};\Xi_{c}^{\prime0};\Xi_{c}^{\prime0}) \\ &+ \mathcal{A}bs \, M_{c}(\rho^{+};\Xi_{c}^{\prime0};\Xi_{c}^{0}) + \mathcal{A}bs \, M_{c}(\pi^{+};\Xi_{c}^{\prime0};\Xi_{c}^{\prime0}) + \mathcal{A}bs \, M_{c}(\rho^{+};\Xi_{c}^{\prime0};\Xi_{c}^{\prime0}) \\ &+ \mathcal{A}bs \, M_{e}(\bar{K}^{0};\Lambda_{c}^{+};K^{0}) + \mathcal{A}bs \, M_{e}(\bar{K}^{*0};\Lambda_{c}^{+};K^{*0}) + \mathcal{A}bs \, M_{e}(\bar{K}^{0};\Sigma_{c}^{+};K^{0}) \\ &+ \mathcal{A}bs \, M_{e}(\bar{K}^{*0};\Sigma_{c}^{+};K^{*0}) \big]. \end{split}$$

>Inputs : Form Factors

Transition form factors with scalar (0+) and the axial vector (1+) diquarks.

F	F(0)	m_{fit}	δ	F	F(0)	m_{fit}	δ
$f_1^{\Xi_{cc}^{++}\to\Lambda_c^+}$	0.653	1.72	0.27	$f_2^{\Xi_{cc}^{++} \to \Lambda_c^+}$	-0.738	1.56	0.32
$g_1^{\Xi_{cc}^{++} \to \Lambda_c^+}$	0.533	2.03	0.38	$g_2^{\Xi_{cc}^{++} \to \Lambda_c^+}$	-0.053	1.12	1.10
$f_1^{\Xi_{cc}^{++}\to\Sigma_c^+}$	0.653	1.72	0.27	$f_2^{\Xi_{cc}^{++}\to\Sigma_c^+}$	-0.738	1.56	0.32
$g_1^{\Xi_{cc}^{++}\to\Sigma_c^+}$	0.533	2.03	0.38	$g_2^{\Xi_{cc}^{++}\to\Sigma_c^+}$	-0.053	1.12	1.10
$f_1^{\Xi_{cc}^{++}\to\Xi_c^+}$	0.754	1.84	0.25	$f_2^{\Xi_{cc}^{++}\to\Xi_c^+}$	-0.782	1.67	0.30
$g_1^{\Xi_{cc}^{++}\to\Xi_c^+}$	0.620	2.16	0.35	$g_2^{\Xi_{cc}^{++}\to\Xi_c^+}$	-0.080	1.29	0.52
$f_1^{\Xi_{cc}^{++}\to\Xi_c^{\prime+}}$	0.754	1.84	0.25	$f_2^{\Xi_{cc}^{++}\to\Xi_c^{\prime+}}$	-0.782	1.67	0.30
$g_1^{\Xi_{cc}^{++}\to\Xi_c^{\prime+}}$	0.620	2.16	0.35	$g_2^{\Xi_{cc}^{++}\to\Xi_c^{\prime+}}$	-0.080	1.29	0.52
$f_1^{\Xi_{cc}^+ \to \Sigma_c^0}$	0.653	1.72	0.27	$f_2^{\Xi_{cc}^+ \to \Sigma_c^0}$	-0.738	1.56	0.32
$g_1^{\Xi_{cc}^+ \to \Sigma_c^0}$	0.533	2.03	0.38	$g_2^{\Xi_{cc}^+ \to \Sigma_c^0}$	-0.053	1.12	1.10
$f_1^{\Xi_{cc}^+ \to \Xi_c^0}$	0.754	1.84	0.25	$f_2^{\Xi_{cc}^+ \to \Xi_c^0}$	-0.782	1.67	0.30
$g_1^{\Xi_{cc}^+ \to \Xi_c^0}$	0.620	2.16	0.35	$g_2^{\Xi_{cc}^+ \to \Xi_c^0}$	-0.080	1.29	0.52
$f_1^{\Xi_{cc}^+ \to \Xi_c^{\prime 0}}$	0.754	1.84	0.25	$f_2^{\Xi_{cc}^+ \to \Xi_c^{\prime 0}}$	-0.782	1.67	0.30
$g_1^{\Xi_{cc}^+ \to \Xi_c^{\prime 0}}$	0.620	2.16	0.35	$g_2^{\Xi_{cc}^+ \to \Xi_c^{\prime 0}}$	-0.080	1.29	0.52
$f_1^{\Omega_{cc}^+ \to \Xi_c^0}$	0.646	1.68	0.28	$f_2^{\Omega_{cc}^+ \to \Xi_c^0}$	-0.770	1.54	0.33
$g_1^{\Omega_{cc}^+ \to \Xi_c^0}$	0.528	1.99	0.40	$g_2^{\Omega_{cc}^+ \to \Xi_c^0}$	-0.060	1.12	1.02
$f_1^{\Omega_{cc}^+ \to \Xi_c^{\prime 0}}$	0.646	1.68	0.28	$f_2^{\Omega_{cc}^+ \to \Xi_c^{\prime 0}}$	-0.770	1.54	0.33
$g_1^{\Omega_{cc}^+ \to \Xi_c^{\prime 0}}$	0.528	1.99	0.40	$g_2^{\Omega_{cc}^+ \to \Xi_c^{\prime 0}}$	-0.060	1.12	1.02
$f_1^{\Omega_{cc}^+ \to \Omega_c^0}$	0.748	1.80	0.27	$f_2^{\Omega_{cc}^+ \to \Omega_c^0}$	-0.819	1.64	0.32
$g_1^{\Omega_{cc}^+ \to \Omega_c^0}$	0.615	2.11	0.36	$g_2^{\Omega_{cc}^+ \to \Omega_c^0}$	-0.088	1.28	0.52

F	F(0)	$m_{\rm fit}$	δ	F	F(0)	$m_{\rm fit}$	δ
$f_1^{\Xi_{cc}^{++}\to\Lambda_c^+}$	0.637	1.49	0.37	$f_2^{\Xi_{cc}^{++}\to\Lambda_c^+}$	0.725	1.53	0.32
$g_1^{\Xi_{cc}^{++} \to \Lambda_c^+}$	-0.167	1.99	0.23	$g_2^{\Xi_{cc}^{++} \to \Lambda_c^+}$	-0.028^{*}	2.03*	2.62*
$f_1^{\Xi_{cc}^{++}\to\Sigma_c^+}$	0.637	1.49	0.37	$f_2^{\Xi_{cc}^{++}\to\Sigma_c^+}$	0.725	1.53	0.32
$g_1^{\Xi_{cc}^{++}\to\Sigma_c^+}$	-0.167	1.99	0.23	$g_2^{\Xi_{cc}^{++} \to \Sigma_c^+}$	-0.028^{*}	2.03*	2.62^{*}
$f_1^{\Xi_{cc}^{++}\to\Xi_c^+}$	0.739	1.58	0.36	$f_2^{\Xi_{cc}^{++}\to\Xi_c^+}$	0.801	1.62	0.31
$g_1^{\Xi_{cc}^{++}\to\Xi_c^+}$	-0.198	2.10	0.21	$g_2^{\Xi_{cc}^{++}\to\Xi_c^+}$	-0.018^{*}	1.62^{*}	1.37^{*}
$f_1^{\Xi_{cc}^{++}\to\Xi_c^{\prime+}}$	0.739	1.58	0.36	$f_2^{\Xi_{cc}^{++}\to\Xi_c^{\prime+}}$	0.801	1.62	0.31
$g_1^{\Xi_{cc}^{++}\to\Xi_c^{\prime+}}$	-0.198	2.10	0.21	$g_2^{\Xi_{cc}^{++}\to\Xi_c^{\prime+}}$	-0.018^{*}	1.62^{*}	1.37^{*}
$f_1^{\Xi_{cc}^+ \to \Sigma_c^0}$	0.637	1.49	0.37	$f_2^{\Xi_{cc}^+ \to \Sigma_c^0}$	0.725	1.53	0.32
$g_1^{\Xi_{cc}^+ \to \Sigma_c^0}$	-0.167	1.99	0.23	$g_2^{\Xi_{cc}^+ \to \Sigma_c^0}$	-0.028^{*}	2.03*	2.62*
$f_1^{\Xi_{cc}^+ \to \Xi_c^0}$	0.739	1.58	0.36	$f_2^{\Xi_{cc}^+ \to \Xi_c^0}$	0.801	1.62	0.31
$g_1^{\Xi_{cc}^+ \to \Xi_c^0}$	-0.198	2.10	0.21	$g_2^{\Xi_{cc}^+ \to \Xi_c^0}$	-0.018^{*}	1.62^{*}	1.37^{*}
$f_1^{\Xi_{cc}^+ \to \Xi_c^{\prime 0}}$	0.739	1.58	0.36	$f_2^{\Xi_{cc}^+ \to \Xi_c^{\prime 0}}$	0.801	1.62	0.31
$g_1^{\Xi_{cc}^+ \to \Xi_c^{\prime 0}}$	-0.198	2.10	0.21	$g_2^{\Xi_{cc}^+ \to \Xi_c^{\prime 0}}$	-0.018^{*}	1.62^{*}	1.37^{*}
$f_1^{\Omega_{cc}^+ \to \Xi_c^0}$	0.632	1.47	0.38	$f_2^{\Omega_{cc}^+ \to \Xi_c^0}$	0.734	1.52	0.33
$g_1^{\Omega_{cc}^+ \to \Xi_c^0}$	-0.165	1.97	0.27	$g_2^{\Omega_{cc}^+ \to \Xi_c^0}$	-0.031^{*}	2.32*	3.92*
$f_1^{\Omega_{cc}^+ \to \Xi_c^{\prime 0}}$	0.632	1.47	0.38	$f_2^{\Omega_{cc}^+ \to \Xi_c^{\prime 0}}$	0.734	1.52	0.33
$g_1^{\Omega_{cc}^+ \to \Xi_c^{\prime 0}}$	-0.165	1.97	0.27	$g_2^{\Omega_{cc}^+ \to \Xi_c^{\prime 0}}$	-0.031^{*}	2.32^{*}	3.92*
$f_1^{\Omega_{cc}^+ \to \Omega_c^0}$	0.735	1.57	0.37	$f_2^{\Omega_{cc}^+ \to \Omega_c^0}$	0.812	1.61	0.32
$g_1^{\Omega_{cc}^+ \to \Omega_c^0}$	-0.196	2.08	0.24	$g_2^{\Omega_{cc}^+ \to \Omega_c^0}$	-0.021^{*}	1.79^{*}	1.77^{*}

W. Wang, F. S. Yu and Z. X. Zhao, Eur. Phys. J. C 77, no. 11, 781 (2017) 20

Inputs : Strong Coupling Constants

											-
vertex	g	vertex	g	vertex	g	vertex	g	vertex	g	vertex	g
$\rho^+ \to \pi^0 \pi^+$	6.05	$\rho^0 \to \pi^- \pi^+$	6.05	$\rho^+ \to K^+ \overline{K}^0$	4.60	$\rho^0 \to K^0 \overline{K}^0$	-3.25	$\rho^0 \to K^+ K^-$	3.25	$\omega \to K^+ K^-$	3.25
$\phi \to K^- K^+$	4.60	$\overline{K}^{*0} \to \eta_8 \overline{K}^0$	5.63	$\overline{K}^{*0} \to K^- \pi^+$	4.60	$\overline{K}^{*0} \to \overline{K}^0 \pi^0$	-3.25	$K^{*+} \to K^+ \pi^0$	3.25	$\phi \to \overline{K}^0 K^0$	4.60
$K^{*+} \to \eta_8 K^+$	5.63	$K^{*+} \to \pi^+ K^0$	4.60	$K^{*0} \to \pi^- K^+$	4.60	$K^{*0} \to K^0 \eta_8$	5.63	$K^{*0} \to \pi^0 K^0$	-3.25	$\omega \to K^0 \overline{K}^0$	3.25
$\rho^+ \to \rho^0 \rho^+$	7.38	$\rho^0 \to \rho^- \rho^+$	7.38	$\rho^+ \to K^{*+} \overline{K}^{*0}$	5.22	$\rho^0 \to K^{*+} K^{*-}$	3.69	$\omega \to K^{*+}K^{*-}$	3.69	$\rho^0 \to K^{*0} \overline{K}^{*0}$	-3.69
$\overline{K}^{*0} \to \phi \overline{K}^{*0}$	5.22	$\overline{K}^{*0} \to \overline{K}^{*0} \rho^0$	-3.69	$\overline{K}^{*0} \to \overline{K}^{*0} \omega$	3.69	$K^{*+} \to \rho^+ K^{*0}$	5.22	$K^{*+} \to \phi K^{*+}$	5.22	$K^{*+} \to K^{*+} \rho^0$	3.69
$K^{*+} \to \omega K^{*+}$	3.69	$K^{*0} \rightarrow \rho^0 K^{*0}$	-3.69	$K^{*0} \to \omega K^{*0}$	3.69	$K^{*0} \to K^{*0} \phi$	5.22	$\phi \to K^{*-}K^{*+}$	5.22	$\overline{K}^{*0} \to K^{*-} \rho^+$	5.22
$\omega \to K^{*0} \overline{K}^{*0}$	3.69	$\phi \to \overline{K}^{*0} K^{*0}$	5.22								

TABLE V: Strong coupling constants of VPP and VVV vertices.

TABLE VI: Strong coupling constants of $\mathcal{B}_{c3}\mathcal{B}_{c3}P$, $\mathcal{B}_{c3}\mathcal{B}_{c6}P$ and $\mathcal{B}_{c6}\mathcal{B}_{c6}P$ vertices.

vertex	g	vertex	g	vertex	g	vertex	g	vertex	g	vertex	g
$\Xi_c^0 \to \Xi_c^+ \pi^-$	0.99	$\Xi_c^+ \to \Xi_c^0 \pi^+$	0.99	$\Xi_c^0 \to \Xi_c^0 \pi^0$	-0.70	$\Xi_c^0 \to \Lambda_c^+ K^-$	-0.90	$\Xi_c^+ \to \Xi_c^+ \pi^0$	0.70	$\Xi_c^0 \to \Xi_c^0 \eta_8$	-0.70
$\Lambda_c^+ \to \Lambda_c^+ \eta_1$	0.75	$\Xi_c^+ \to \Xi_c^+ \eta_1$	0.07	$\Xi_c^0 \to \Xi_c^0 \eta_1$	0.07	$\Lambda_c^+ \to \Lambda_c^+ \eta_8$	0.81	$\Xi_c^+ \to \Xi_c^+ \eta_8$	-0.70	$\Xi_c^+ \to \Lambda_c^+ \overline{K}^0$	0.90
$\Sigma_c^0 \to \Sigma_c^+ \pi^-$	8.0	$\Xi_c^{\prime 0} \to \Xi_c^{\prime 0} \pi^0$	-4.0	$\Xi_c^{\prime 0} \to \Sigma_c^0 \overline{K}^0$	9.0	$\Sigma_c^+ \to \Sigma_c^0 \pi^+$	8.0	$\Xi_c^{\prime 0} \to \Sigma_c^+ K^-$	6.4	$\Xi_c^{\prime 0} \to \Xi_c^{\prime +} \pi^-$	5.7
$\Sigma_c^0 \to \Sigma_c^0 \pi^0$	-8.0	$\Sigma_c^0 \to \Xi_c^{\prime 0} K^0$	9.0	$\Xi_c^{\prime +} \to \Xi_c^{\prime +} \pi^0$	4.0	$\Xi_c^{\prime +} \to \Sigma_c^{++} K^-$	9.0	$\Xi_c^{\prime +} \to \Xi_c^{\prime 0} \pi^+$	5.7	$\Sigma_c^{++} \to \Sigma_c^+ \pi^+$	8.0
$\Sigma_c^{++} \to \Xi_c^{\prime+} K^+$	9.0	$\Sigma_c^+ \to \Xi_c^{\prime +} K^0$	6.4	$\Sigma_c^+ \to \Sigma_c^{++} \pi^-$	8.0	$\Xi_c^{\prime +} \to \Omega_c^0 K^+$	9.0	$\Xi_c^{\prime +} \to \Sigma_c^+ \overline{K}^0$	6.4	$\Sigma_c^+ \to \Xi_c^{\prime 0} K^+$	6.4
$\Omega_c^0 \to \Xi_c^{\prime +} K^-$	9.0	$\Xi_c^{\prime 0} \to \Omega_c^0 K^0$	9.0	$\Sigma_c^0 \to \Sigma_c^0 \eta_1$	-2.6	$\Omega_c^0 o \Omega_c^0 \eta_1$	-11.0	$\Omega_c^0 \to \Xi_c^{\prime 0} \overline{K}^0$	9.0	$\Sigma_c^0 \to \Sigma_c^0 \eta_8$	4.6
$\Omega_c^0 \to \Omega_c^0 \eta_8$	-10.4	$\Sigma_c^+ \to \Sigma_c^+ \eta_1$	-2.6	$\Xi_c^{\prime 0} \to \Xi_c^{\prime 0} \eta_1$	-2.6	$\Xi_c^{\prime +} \to \Xi_c^{\prime +} \eta_1$	-2.6	$\Sigma_c^+ \to \Sigma_c^+ \eta_8$	4.6	$\Xi_c^{\prime 0} \to \Xi_c^{\prime 0} \eta_8$	-2.3
$\Xi_c^0 \to \Xi_c^{\prime +} \pi^-$	4.4	$\Xi_c^{\prime +} \to \Xi_c^+ \pi^0$	3.1	$\Xi_c^{\prime +} \to \Xi_c^0 \pi^+$	4.4	$\Omega_c^0 \to \Xi_c^+ K^-$	6.5	$\Xi_c^{\prime +} \to \Lambda_c^+ \overline{K}^0$	-4.6	$\Sigma_c^+ \to \Lambda_c^+ \pi^0$	6.5
$\Xi_c^0 \to \Omega_c^0 K^0$	6.5	$\Omega_c^0 \to \Xi_c^0 \overline{K}^0$	6.5	$\Sigma_c^0 \to \Xi_c^0 K^0$	-7.1	$\Xi_c^{\prime +} \to \Lambda_c^+ K^0$	-4.6	$\Xi_c^+ \to \Xi_c^{\prime 0} \pi^+$	4.4	$\Lambda_c^+ \to \Xi_c^{\prime 0} K^+$	4.6
$\Xi_c^0 \to \Sigma_c^+ K^-$	-5.0	$\Xi_c^{\prime 0} \to \Xi_c^0 \pi^0$	-3.1	$\Xi_c^+ \to \Xi_c^{\prime 0} \pi^+$	4.4	$\Xi_c^{\prime 0} \to \Lambda_c^+ K^-$	4.6	$\Xi_c^{\prime 0} \to \Xi_c^+ \pi^-$	4.4	$\Xi_c^+ \to \Omega_c^0 K^+$	6.5
$\Sigma_c^{++} \to \Xi_c^+ K^+$	-7.1	$\Xi_c^+ \to \Sigma_c^{++} K^-$	-7.1	$\Sigma_c^{++} \to \Lambda_c^+ \pi^+$	-6.5	$\Xi_c^0 \to \Sigma_c^0 \overline{K}^0$	-7.1	$\Lambda_c^+ \to \Sigma_c^{++} \pi^-$	-6.5	$\Lambda_c^+ \to \Sigma_c^0 \pi^+$	6.5
$\Sigma_c^+ \to \Xi_c^0 K^+$	-5.0	$\Sigma_c^0 \to \Lambda_c^+ \pi^-$	6.5	$\Xi_c^{\prime +} \to \Xi_c^+ \eta_8$	5.4	$\Sigma_c^+ \to \Xi_c^+ K^0$	-5.0	$\Xi_c^+ \to \Sigma_c^+ \overline{K}^0$	-5.0	$\Xi_c^{\prime 0} \to \Xi_c^0 \eta_8$	5.4
$\Lambda_c^+ \to \Xi_c^0 K^+$	-0.90	$\Xi_c^+ \to \Lambda_c^+ \overline{K}^0$	0.90	$\Xi_c^{\prime +} \to \Xi_c^{\prime +} \eta_8$	-2.3						3

>Inputs : Strong Coupling Constants

TABLE VII: The strong coupling constants of $\mathcal{B}_{c3}\mathcal{B}_{c3}V$ vertices, each of which owns two SU(3) triplet singly charm baryons and one light vector meson.

vertex	f_1	f_2	vertex	f_1	f_2	vertex	f_1	f_2	vertex	f_1	f_2
$\Xi_c^0 \to \Lambda_c^+ K^{*-}$	-4.6	-6.0	$\Xi_c^0 \to \Xi_c^0 \rho^0$	-6.0	-7.5	$\Xi_c^+ \to \Xi_c^0 \rho^+$	8.5	10.6	$\Lambda_c^+ \to \Xi_c^0 K^{*+}$	-4.6	-6.0
$\Xi_c^0\to \Xi_c^0\phi$	4.6	6.0	$\Xi_c^0\to \Xi_c^0\omega$	5.5	7.5	$\Lambda_c^+ \to \Lambda_c^+ \omega$	4.9	6.0	$\Xi_c^0 \to \Xi_c^+ \rho^-$	8.5	10.6
$\Xi_c^+ \to \Lambda_c^+ \overline{K}^{*0}$	4.6	6.0	$\Xi_c^+\to \Xi_c^+\rho^0$	6.0	7.5	$\Xi_c^+ \to \Xi_c^+ \omega$	5.5	7.5	$\Xi_c^+\to \Xi_c^+\phi$	4.6	6.0
$\Sigma_c^0 \to \Xi_c^{\prime 0} K^{*0}$	5.0	30.0	$\Xi_c^{\prime 0} ightarrow \Xi_c^{\prime 0} ho^0$	-2.5	-16.0	$\Xi_c^{\prime 0} \to \Xi_c^{\prime +} \rho^-$	3.5	22.6	$\Xi_c^{'0} \to \Xi_c^{'0} \phi$	4.0	21.0
$\Xi_c^{\prime +} \to \Xi_c^{\prime 0} \rho^+$	3.5	22.6	$\Sigma_c^+ \to \Xi_c^{\prime 0} K^{*+}$	3.5	21.2	$\Xi_c^{\prime 0} \to \Xi_c^{\prime 0} \omega$	2.4	15.0	$\Xi_c^{\prime 0} \to \Sigma_c^+ K^{*-}$	3.5	21.2
$\Xi_c^{\prime 0} \to \Sigma_c^0 \overline{K}^{*0}$	5.0	30.0	$\Sigma_c^+ \to \Sigma_c^{++} \rho^-$	4.0	27.0	$\Sigma_c^{++} \to \Xi_c^{\prime+} K^{*+}$	5.0	30.0	$\Xi_c^{\prime +} \to \Sigma_c^{++} K^{*-}$	5.0	30.0
$\Xi_c^{\prime +} \to \Sigma_c^+ \overline{K}^{*0}$	3.5	21.2	$\Xi_c^{\prime +} \to \Xi_c^{\prime +} \rho^0$	2.5	16.0	$\Xi_c^{\prime +} \to \Xi_c^{\prime +} \phi$	4.0	21.0	$\Xi_c^{\prime +} \to \Xi_c^{\prime +} \omega$	2.4	15.0
$\Sigma_c^+ \to \Xi_c^{\prime +} K^{*0}$	3.5	21.2	$\Sigma_c^{++} \to \Sigma_c^+ \rho^+$	4.0	27.0	$\Sigma_c^0 \to \Sigma_c^0 \rho^0$	-4.0	-27.0	$\Sigma_c^0 \to \Sigma_c^0 \omega$	3.5	24.0
$\Sigma_c^+ \to \Sigma_c^0 \rho^+$	4.0	27.0	$\Sigma_c^0 \to \Sigma_c^+ \rho^-$	4.0	27.0	$\Xi_c^{\prime +} \to \Omega_c^0 K^{*+}$	7.0	35.0	$\Omega_c^0 \to \Xi_c^{\prime 0} K^{*0}$	7.0	35.0
$\Omega_c^0\to\Omega_c^0\phi$	11.0	52.0	$\Omega_c^0 \to \Xi_c^{\prime +} K^{*-}$	7.0	35.0	$\Omega_c^0 \to \Xi_c^{\prime 0} \overline{K}^{*0}$	7.0	35.0	$\Sigma_c^+ \to \Sigma_c^+ \omega$	3.5	24.0
$\Xi_c^{\prime0} ightarrow \Xi_c^0 ho^0$	-1.5	-11.0	$\Xi_c^{\prime 0} \to \Xi_c^0 \phi$	-2.1	-13.0	$\Xi_c^{\prime 0} ightarrow \Xi_c^0 \omega$	1.2	8.0	$\Xi_c^{\prime +} \to \Xi_c^+ \omega$	1.5	11.0
$\Lambda_c^+ \to \Xi_c^{\prime 0} K^{*+}$	2.3	14.1	$\Xi_c^{\prime 0} \to \Lambda_c^+ K^{*-}$	2.3	14.1	$\Xi_c^+ \to \Xi_c^{\prime 0} \rho^+$	2.1	15.6	$\Xi_c^{\prime 0} \rightarrow \Xi_c^+ \rho^-$	2.1	15.6
$\Xi_c^{\prime +} \to \Lambda_c^+ \overline{K}^{*0}$	-2.3	-14.1	$\Sigma_c^+ \to \Xi_c^0 K^{*+}$	-2.2	-13.0	$\Xi_c^+ \to \Sigma_c^+ K^{*0}$	-2.2	-13.0	$\Xi_c^{\prime +} \to \Xi_c^0 \rho^+$	2.1	15.6
$\Xi_c^{\prime +} \rightarrow \Xi_c^+ \rho^0$	1.5	11.0	$\Xi_c^{\prime +} \to \Xi_c^+ \phi$	-2.1	-13.0	$\Xi_c^0\to\Xi_c^{\prime+}\rho^-$	2.1	15.6	$\Sigma_c^+ \to \Xi_c^+ \overline{K}^{*0}$	-2.2	-13.0
$\Sigma_c^+ \to \Lambda_c^+ \rho^0$	2.6	16.0	$\Xi_c^+ \to \Omega_c^0 K^{*+}$	3.3	20.0	$\Lambda_c^+ \to \Xi_c^{\prime +} K^{*0}$	-2.3	-14.1	$\Xi_c^0 \to \Sigma_c^+ K^{*-}$	-2.2	-13.0
$\Sigma_c^{++} \to \Xi_c^+ K^{*+}$	-3.1	-18.4	$\Xi_c^+\to \Sigma_c^{++} K^{*-}$	-3.1	-18.4	$\Sigma_c^{++} \to \Lambda_c^+ \rho^+$	-2.6	-16.0	$\Lambda_c^+ \to \Sigma_c^{++} \rho^-$	-2.6	-16.0
$\Lambda_c^+ \to \Sigma_c^0 \rho^+$	2.6	16.0	$\Sigma_c^0 \to \Lambda_c^+ \rho^-$	2.6	16.0	$\Omega_c^0 \to \Xi_c^+ K^{*-}$	3.3	20.0	$\Xi_c^0 \to \Sigma_c^0 \overline{K}^{*0}$	-2.2	-13.0
$\Xi_c^0 \to \Omega_c^0 K^{*0}$	3.3	20.0	$\Sigma_c^0 \to \Xi_c^0 K^{*0}$	-2.2	-13.0	$\Omega_c^0 \to \Xi_c^0 \overline{K}^{*0}$	3.3	20.0	$\Lambda_c^+ \to \Xi_c^+ K^{*0}$	4.6	6.0

[1] H. Y. Cheng, C. K. Chua and A. Soni, Phys. Rev. D 71, 014030 (2005)

[2] T. M. Aliev, K. Azizi and M. Savci, Phys. Lett. B 696, 220 (2011) doi:10.1016/j.physletb.2010.12.027
[3] T. M. Aliev, K. Azizi and M. Savci, Nucl. Phys. A 852, 141 (2011) doi:10.1016/j.nuclphysa.2011.01.011

Topological FCNC contributions Induced by FSI

- The weak decay is induced at quark level by $c \rightarrow ud\overline{d}$. The dd pair annihilates subsequently, and the weak transition is equivalent to a flavor changing neutral current $c \rightarrow u \gamma/G$. The same situation exists in $c \rightarrow us\overline{s}$ inducing decays.
- > Topologically, it looks the same as $O_{7\gamma}$ or O_{8G} operators in the low energy effective hamiltonian, which are purely loop effects and suppressed highly at short distance in the standard model.
- However, it is the long distance contributions that are considered here, thus they are kept.
 23

3 Results and Discussions

For lack of experimental data we use $\eta = 1.5$ in this work and range it from 1 to 2 for error estimation.

Channels	$\mathcal{BR}(\%)$	Contributions	CKM	Channels	$\mathcal{BR}(\%)$	Contributions	CKM
$\Xi_{cc}^{++} \to \Sigma_c^{++} \bar{K}^{*0}$	$5.40^{+5.59}_{-3.66}$	$C_{ m SD}, C$	\mathbf{CF}	$\Xi_{cc}^{++} \to \Xi_c^+ \rho^+$	$15.92^{+5.27}_{-3.03}$	T_{SD}, T, C'	\mathbf{CF}
$\Xi_{cc}^{++} \to \Xi_c^{'+} \rho^+$	$16.50^{+1.21}_{-0.69}$	T_{SD}, T, C'	\mathbf{CF}	$\Xi_{cc}^{++} \to \Sigma_c^+ \rho^+$	$1.57\substack{+0.63 \\ -0.40}$	$T_{\mathrm{SD}}, T, C', N$	SCS
$\Xi_{cc}^{++} \to \Lambda_c^+ \rho^+$	$2.10^{+1.32}_{-0.82}$	$T_{\mathrm{SD}}, T, C', N$	SCS	$\Xi_{cc}^{++} \to \Sigma_c^{++} \rho^0$	$0.04^{+0.04}_{-0.03}$	$C_{ m SD}, C, N$	SCS
$\Xi_{cc}^{++} \to \Sigma_c^{++} \omega$	$0.15\substack{+0.17 \\ -0.10}$	$C_{ m SD}, C, N$	SCS	$\Xi_{cc}^{++} \to \Sigma_c^{++} \phi$	$0.09\substack{+0.08\\-0.06}$	$C_{ m SD}, C$	SCS
$\Xi_{cc}^{++}\to \Xi_c^+ K^{*+}$	$0.59\substack{+0.14 \\ -0.10}$	$T_{\rm SD}, T, N, C'$	SCS	$\Xi_{cc}^{++} \to \Xi_c^{\prime+} K^{*+}$	$0.85^{+0.14}_{-0.09}$	$T_{\rm SD}, T, N, C'$	SCS
$\Xi_{cc}^{++} \to \Sigma_c^+ K^{*+}$	$0.06\substack{+0.00 \\ -0.01}$	$T_{\rm SD}, T, C'$	DCS	$\Xi_{cc}^{++} \to \Lambda_c^+ K^{*+}$	$0.05\substack{+0.00 \\ -0.00}$	T_{SD}, T, C'	DCS
$\Xi_{cc}^{++} \to \Sigma_c^{++} K^{*0}$	$0.02\substack{+0.02 \\ -0.01}$	$C_{ m SD}, C$	DCS				

- > The **BR** of singly CKM suppressed decays range from order of 10^{-3} to 10^{-2} . The doubly CKM suppressed decays have the smallest **BR** at the order of 10^{-4} .
- Among decays in the same CKM mode, those with T contributions tend to have largest BR. The C type decays are about several times smaller than the T type. The other types of decays are suppressed highly.
- Checking the errors, one can find that the T contributions are not sensitive to the variation of η. However, the other types of contributions which increase or decrease rapidly as η changes.
- $E_{cc}^{++} \rightarrow \Xi_{c}^{+} \rho^{+} \qquad \Xi_{cc}^{++} \rightarrow \Xi_{c}^{'+} \rho^{+} \text{ have the largest } \mathcal{BR} \text{ , whose values are around 16\% (} \rho^{+} \text{may have a low reconstruction efficiency in experiments).}$

3 Results and Discussions

Because there is no experimental data for lifetime of Ξ_{cc}^+ . Instead of branching fractions we present the decay widths in unit of GeV.

Channels	$\Gamma/{ m GeV}$	Contributions	CKM	Channels	$\Gamma/{ m GeV}$	Contributions	CKM
$\Xi_{cc}^+ \to \Sigma_c^+ \overline{K}^{*0}$	$(1.37^{+1.46}_{-0.93}) * 10^{-13}$	C_{SD}, C, E_2	CF	$\Xi_{cc}^+ \to \Lambda_c^+ \overline{K}^{*0}$	$(1.04^{+1.14}_{-0.72}) * 10^{-13}$	C_{SD}, C, E_2	CF
$\Xi_{cc}^+ \to \Xi_c^0 \rho^+$	$(3.83^{+0.48}_{-0.37}) * 10^{-13}$	T_{SD}, T, E_1	CF	$\Xi_{cc}^+ \to \Xi_c^{\prime 0} \rho^+$	$(4.77^{+0.31}_{-0.24}) * 10^{-13}$	$T_{ m SD}, T, E_1$	CF
$\Xi_{cc}^+ o \Xi_c^+ ho^0$	$(1.01^{+1.15}_{-0.71}) * 10^{-14}$	C', E_1	CF	$\Xi_{cc}^{+} \to \Xi_{c}^{'+} \rho^{0}$	$(1.59^{+1.76}_{-1.10}) * 10^{-15}$	C', E_1	CF
$\Xi_{cc}^+ \to \Xi_c^+ \omega$	$(7.82^{+8.98}_{-5.46}) * 10^{-15}$	C', E_1	CF	$\Xi_{cc}^+ \to \Xi_c^{'+} \omega$	$(1.33^{+1.46}_{-0.92}) * 10^{-15}$	C', E_1	CF
$\Xi_{cc}^+ \to \Sigma_c^{++} K^{*-}$	$(7.38^{+7.83}_{-5.02}) * 10^{-16}$	E_2	CF	$\Xi_{cc}^+ \to \Xi_c^+ \phi$	$(5.12^{+5.59}_{-3.52}) * 10^{-15}$	E_2	CF
$\Xi_{cc}^+ o \Xi_c^{\prime +} \phi$	$(9.90^{+10.24}_{-6.72}) * 10^{-17}$	E_2	CF	$\left \Xi_{cc}^{+}\to\Omega_{c}^{0}K^{*+}\right $	$(2.33^{+2.16}_{-1.54}) * 10^{-14}$	E_1	CF
$\Xi_{cc}^+ \to \Sigma_c^+ \rho^0$	$(1.26^{+1.43}_{-0.88}) * 10^{-14}$	$C_{\mathrm{SD}}, C, C', E_1, E_2, N$	SCS	$\Xi_{cc}^+ \to \Lambda_c^+ \rho^0$	$(4.97^{+5.93}_{-3.50}) * 10^{-15}$	$C_{\mathrm{SD}}, C, C', E_1, E_2, N$	SCS
$\Xi_{cc}^+ \to \Sigma_c^+ \omega$	$(3.22^{+3.59}_{-2.23}) * 10^{-15}$	$C_{\mathrm{SD}}, C, C', E_1, E_2, N$	SCS	$\Xi_{cc}^+ \to \Lambda_c^+ \omega$	$(1.60^{+1.91}_{-1.13}) * 10^{-15}$	$C_{\rm SD}, C, C', E_1, E_2, N$	SCS
$\Xi_{cc}^+ \to \Sigma_c^0 \rho^+$	$(9.02^{+3.70}_{-2.45}) * 10^{-14}$	$T_{\mathrm{SD}}, T, E_1, N$	SCS	$\Xi_{cc}^+ \to \Sigma_c^+ \phi$	$(1.54^{+1.40}_{-1.01}) * 10^{-15}$	$C_{ m SD}, C$	SCS
$\Xi_{cc}^+ \to \Lambda_c^+ \phi$	$(2.61^{+2.67}_{-1.76}) * 10^{-15}$	C_{SD}, C	SCS	$\Xi_{cc}^+ \to \Xi_c^0 K^{*+}$	$(1.30^{+0.00}_{-0.00}) * 10^{-14}$	$T_{\rm SD}, T, E_1, N$	SCS
$\Xi_{cc}^+ \to \Xi_c^{\prime 0} K^{*+}$	$(2.19^{+0.19}_{-0.10}) * 10^{-14}$	$T_{\mathrm{SD}}, T, E_1, N$	SCS	$\Xi_{cc}^+ \to \Xi_c^+ K^{*0}$	$(1.06^{+0.97}_{-0.69}) * 10^{-15}$	C', E_2, N	SCS
$\Xi_{cc}^{+} \to \Xi_{c}^{'+} K^{*0}$	$(2.64^{+2.66}_{-1.77}) * 10^{-15}$	C', E_2, N	SCS	$\Xi_{cc}^+ \to \Sigma_c^{++} \rho^-$	$(7.60^{+8.83}_{-5.33}) * 10^{-16}$	E_2, N	SCS
$\Xi_{cc}^+ \to \Sigma_c^+ K^{*0}$	$(1.96^{+2.03}_{-1.33}) * 10^{-15}$	C_{SD}, C, C'	DCS	$\Xi_{cc}^+ \to \Lambda_c^+ K^{*0}$	$(9.99^{+11.18}_{-6.95}) * 10^{-16}$	C_{SD}, C, C'	DCS
$\Xi_{cc}^+ \to \Sigma_c^0 K^{*+}$	$(2.88^{+0.00}_{-0.00}) * 10^{-16}$	$T_{ m SD}, T$	DCS				

Estimated with the $\tau_{\Xi_{\pm}^+} = 45 \, \text{fs}$, the four largest branching fractions are given as

 $\begin{aligned} \mathcal{BR}(\Xi_{cc}^{+} \to \Sigma_{c}^{+} \overline{K}^{*0}) &\in [0.3\%, 1.9\%], \quad \mathcal{BR}(\Xi_{cc}^{+} \to \Lambda_{c}^{+} \overline{K}^{*0}) \in [0.2\%, 1.5\%], \\ \mathcal{BR}(\Xi_{cc}^{+} \to \Xi_{c}^{0} \rho^{+}) &\in [2.4\%, 2.9\%], \quad \mathcal{BR}(\Xi_{cc}^{+} \to \Xi_{c}^{'0} \rho^{+}) \in [3.1\%, 3.5\%]. \end{aligned}$

Some pure W exchange decays which are highly suppressed at short distance. These decays are thought to be activated almost by the long distance effects.
25

3 Results and Discussions

Channels	$\Gamma/{ m GeV}$	Contributions	CKM	Channels	$\Gamma/{ m GeV}$	Contributions	CKM
$\Omega_{cc}^+ \to \Xi_c^+ \overline{K}^{*0}$	$(5.53^{+5.96}_{-3.80}) * 10^{-13}$	C_{SD}, C, C'	\mathbf{CF}	$\Omega_{cc}^+ \to \Xi_c^{\prime +} \overline{K}^{*0}$	$(1.06^{+1.09}_{-0.72}) * 10^{-12}$	C_{SD}, C, C'	CF
$\Omega_{cc}^+ \to \Omega_c^0 \rho^+$	$(8.75^{+0.00}_{-0.00}) * 10^{-13}$	$T_{ m SD}, T$	\mathbf{CF}	$\Omega_{cc}^+ \to \Sigma_c^+ \overline{K}^{*0}$	$(3.26^{+3.62}_{-2.26}) * 10^{-15}$	C', E_2, N	SCS
$\Omega_{cc}^+ \to \Lambda_c^+ \overline{K}^{*0}$	$(2.59^{+3.21}_{-1.85}) * 10^{-16}$	C', E_2, N	\mathbf{SCS}	$\Omega_{cc}^+ \to \Xi_c^+ \rho^0$	$(3.04^{+3.55}_{-2.13}) * 10^{-15}$	$C_{\mathrm{SD}}, C, E_1, N$	SCS
$\Omega_{cc}^+ o \Xi_c^{\prime +} \rho^0$	$(2.75^{+2.96}_{-1.89}) * 10^{-15}$	$C_{\mathrm{SD}}, C, E_1, N$	SCS	$\Omega_{cc}^+\to \Xi_c^+\omega$	$(2.38^{+2.78}_{-1.67}) * 10^{-15}$	$C_{\mathrm{SD}}, C, E_1, N$	SCS
$\Omega_{cc}^{+}\to \Xi_{c}^{'+}\omega$	$(2.53^{+2.70}_{-1.74}) * 10^{-15}$	$C_{\mathrm{SD}}, C, E_1, N$	\mathbf{SCS}	$\Omega_{cc}^+ \to \Xi_c^0 \rho^+$	$(4.45^{+2.42}_{-1.57}) * 10^{-14}$	$T_{\mathrm{SD}}, T, E_1, N$	SCS
$\Omega_{cc}^+ \to \Xi_c^{\prime 0} \rho^+$	$(5.59^{+3.04}_{-1.98}) * 10^{-14}$	$T_{\mathrm{SD}}, T, E_1, N$	SCS	$\Omega_{cc}^+\to \Xi_c^+\phi$	$(8.96^{+8.69}_{-5.98}) * 10^{-15}$	$C_{\mathrm{SD}}, C, C', E_2, N$	SCS
$\Omega_{cc}^{+}\to \Xi_{c}^{'+}\phi$	$(4.54^{+4.33}_{-3.01}) * 10^{-14}$	$C_{\mathrm{SD}}, C, C', E_2, N$	SCS	$\Omega_{cc}^+ \to \Omega_c^0 K^{*+}$	$(4.18^{+0.03}_{-0.01}) * 10^{-14}$	$T_{\mathrm{SD}}, T, E_1, N$	SCS
$\Omega_{cc}^+ \to \Sigma_c^{++} K^{*-}$	$(6.77^{+7.64}_{-4.71}) * 10^{-16}$	E_2, N	\mathbf{SCS}	$\Omega_{cc}^+ \to \Xi_c^{\prime +} K^{*0}$	$(8.17^{+8.97}_{-5.63}) * 10^{-16}$	$C_{\mathrm{SD}}, C, E_2, N$	DCS
$\Omega_{cc}^+ \to \Sigma_c^+ \phi$	$(8.45^{+9.15}_{-5.81}) * 10^{-17}$	C'	DCS	$\Omega_{cc}^+ \to \Lambda_c^+ \phi$	$(4.25^{+4.64}_{-2.93}) * 10^{-17}$	C'	DCS
$\Omega_{cc}^+ \to \Xi_c^0 K^{*+}$	$(1.00^{+0.02}_{-0.01}) * 10^{-15}$	T_{SD}, T, E_1	DCS	$\Omega_{cc}^+ \to \Xi_c^{\prime 0} K^{*+}$	$(1.47^{+0.05}_{-0.03}) * 10^{-15}$	$T_{ m SD}, T, E_1$	DCS
$\Omega_{cc}^+ \to \Xi_c^+ K^{*0}$	$(8.13^{+8.64}_{-5.55}) * 10^{-16}$	$C_{\mathrm{SD}}, C, E_2, N$	DCS	$\Omega_{cc}^+ \to \Sigma_c^{++} \rho^-$	$(1.20^{+1.38}_{-0.84}) * 10^{-17}$	E_2, N	DCS
$\Omega_{cc}^+ \to \Sigma_c^+ \rho^0$	$(9.06^{+10.75}_{-6.41}) * 10^{-18}$	E_1, E_2, N	DCS	$\Omega_{cc}^+ \to \Lambda_c^+ \rho^0$	$(1.03^{+1.33}_{-0.74}) * 10^{-17}$	E_1, E_2, N	DCS
$\Omega_{cc}^+ \to \Sigma_c^+ \omega$	$(8.72^{+10.25}_{-6.15}) * 10^{-18}$	E_1, E_2, N	DCS	$\Omega_{cc}^+\to\Lambda_c^+\omega$	$(8.78^{+11.19}_{-6.31}) * 10^{-18}$	E_1, E_2, N	DCS
$\Omega_{cc}^+ \to \Sigma_c^0 \rho^+$	$(1.39^{+1.62}_{-0.97}) * 10^{-16}$	E_1	DCS				

 \succ Calculation: the BR and Γ of $\mathcal{B}_{cc} \rightarrow \mathcal{B}_{c} V$

The factorization hypothesis > Theoretical framework:- The final-state interactions (FSIs) with the one-particle-exchange model Results and Discussions: CF
 Large BR
 Smaller BR
 -T, C
 DCS
 Smallest BR

 \blacktriangleright The largest **BR** s of $\mathcal{B}_{cc} \rightarrow \mathcal{B}_{c}$ V decays are at the percent level.

→ It seems easy to track $\Omega_{cc}^+ \to pK^+\pi^-K^-\pi^+$ in experiments.

Thank you for your attention!