

Study of semileptonic decays $B_c \rightarrow (\eta_c, J/\psi) lv$ in PQCD factorization approach

X.Q. Hu, Z.J. Xiao Nanjing Normal University

河南工业大学 2018.10.27

Outline

- Motivation
- Framework
- Contents
- •Results
- Summary

Motivation

B_(u,d,s,c) meson semileptonic decay

- Determination of CKM (For example: $|V_{cb}|$ in $B \rightarrow Dlv$)
- Examination of SM (HQET, NRQCD, LFQM etc.)
- Hints of new physics (2HDM, MSSM, Leptoquark mode etc.)

 $R(D) = \frac{Br(B \to D\tau\nu)}{Br(B \to Dl\nu)}$ $R(D^*) = \frac{Br(B \to D^* \tau \nu)}{Br(B \to D^* l \nu)}$

 $l=e,\mu$

$$R(D) = \frac{Br(B \to D\tau\nu)}{Br(B \to Dl\nu)}$$

$$R(D^*) = \frac{Br(B \to D^*\tau\nu)}{Br(B \to D^*l\nu)}$$

$$l = e, \mu$$

- 1. The theoretical uncertainties of each branching ratio are large.
- 2. It mainly comes from the Form Factors and $V_{cb.}$
- 3. The theoretical uncertainties in $R(D^{(*)})$ are significantly reduced.

$R(J/\psi)$ Anomaly

$$R(J/\psi) = 0.71 \pm 0.17(stat) \pm 0.18(syst)$$

$$R(J/\psi) \equiv \frac{Br(Bc \rightarrow J/\psi\tau\nu)}{Br(Bc \rightarrow J/\psi\mu\nu)} \in [0.25, 0.28]$$

$$IHCb$$

$$SM$$

PhysRevLett. 120 (2018) 121801

$R(J/\psi)$ Anomaly

$R(J/\psi) = 0.71 \pm 0.17(stat) \pm 0.18(syst)$ $R(J/\psi) \equiv \frac{Br(Bc \rightarrow J/\psi\tau\nu)}{Br(Bc \rightarrow J/\psi\mu\nu)} \in [0.25, 0.28]$ IHCb SM

PhysRevLett. 120 (2018) 121801

$R(J/\psi)$ Anomaly

$$R(J/\psi) = 0.71 \pm 0.17(stat) \pm 0.18(syst)$$

$$R(J/\psi) \equiv \frac{Br(Bc \rightarrow J/\psi\tau\nu)}{Br(Bc \rightarrow J/\psi\mu\nu)} \in [0.25, 0.28]$$

$$IHCb$$

$$SM$$

PhysRevLett. 120 (2018) 121801

Calculate the R(J/ψ) in PQCD factorization approach

LO diagrams

 $\mathcal{H}_{eff}(b \to c l \bar{\nu}_l) = \frac{G_F}{\sqrt{2}} V_{cb} \ \bar{c} \gamma_\mu (1 - \gamma_5) b \cdot \bar{l} \gamma^\mu (1 - \gamma_5) \nu_l$

Effective Hamiltonian

 $\mathcal{H}_{eff}(b \to c l \bar{\nu}_l) = \frac{G_F}{\sqrt{2}} V_{cb} \ \bar{c} \gamma_\mu (1 - \gamma_5) b \cdot \bar{l} \gamma^\mu (1 - \gamma_5) \nu_l$

Effective Hamiltonian

Effective Diagrams

Form Factors

Definition of Form Factors:

Form Factors

Definition of Form Factors: For $B_c \rightarrow \eta_c$ transition

$$\langle M (p_2) | \bar{q}(0) \gamma_{\mu} b(0) | B_c(p_1) \rangle = \left[(p_1 + p_2)_{\mu} - \frac{m_{B_c}^2 - m^2}{q^2} q_{\mu} \right] F_+(q^2)$$

$$+ \frac{m_{B_c}^2 - m^2}{q^2} q_{\mu} F_0(q^2),$$
Pseudo-scalar meson

Form Factors

Definition of Form Factors: For $B_c \rightarrow \eta_c$ transition

Pseudo-scalar meson

$$= \left[(p_1 + p_2)_{\mu} - \frac{m_{B_c}^2 - m^2}{q^2} q_{\mu} \right] F_+(q^2) + \frac{m_{B_c}^2 - m^2}{q^2} q_{\mu} F_0(q^2),$$

For $B_c \rightarrow J/\psi$ transition

$$\langle M (p_2) | \bar{q}(0) \gamma_{\mu} b(0) | B_c(p_1) \rangle = \epsilon_{\mu\nu\alpha\beta} \epsilon^{\nu*} p_1^{\alpha} p_2^{\beta} \frac{2V(q^2)}{m_{B_c} + m} ,$$

$$\langle M (p_2) | \bar{q}(0) \gamma_{\mu} \gamma_5 b(0) | B_c(p_1) \rangle = i \left[\epsilon_{\mu}^* - \frac{\epsilon^* \cdot q}{q^2} q_{\mu} \right] (m_{B_c} + m) A_1(q^2)$$

$$= i \left[(p_1 + p_2)_{\mu} - \frac{m_{B_c}^2 - m^2}{q^2} q_{\mu} \right] (\epsilon^* \cdot q) \frac{A_2(q^2)}{m_{B_c} + m}$$

$$+ i \frac{2m(\epsilon^* \cdot q)}{q^2} q_{\mu} A_0(q^2),$$

For
$$B_c \to \eta_c l \nu$$

$$\frac{d\Gamma(b \to c l \bar{\nu}_l)}{dq^2} = \frac{G_F^2 |V_{cb}|^2}{192\pi^3 m_B^3} \left(1 - \frac{m_l^2}{q^2}\right)^2 \frac{\lambda^{1/2}(q^2)}{2q^2} \cdot \left\{3m_l^2 \left(m_B^2 - m_D^2\right)^2 |F_0(q^2)|^2 + \left(m_l^2 + 2q^2\right)\lambda(q^2)|F_+(q^2)|^2\right\},$$

$$\lambda(q^2) = \left(m_B^2 + m_{D^*}^2 - q^2\right)^2 - 4m_B^2 m_{D^*}^2$$

For
$$B_c \to \eta_c l \nu$$

$$\frac{d\Gamma(b \to c l \bar{\nu}_l)}{dq^2} = \frac{G_F^2 |V_{cb}|^2}{192\pi^3 m_B^3} \left(1 - \frac{m_l^2}{q^2}\right)^2 \frac{\lambda^{1/2}(q^2)}{2q^2} \cdot \left\{3m_l^2 \left(m_B^2 - m_D^2\right)^2 |F_0(q^2)|^2 + \left(m_l^2 + 2q^2\right) \lambda(q^2) |F_+(q^2)|^2\right\},$$

$$\lambda(q^2) = \left(m_B^2 + m_{D^*}^2 - q^2\right)^2 - 4m_B^2 m_{D^*}^2$$

For $B_c \to J/\psi \, l \, \nu$

Longitude part:

$$\begin{aligned} \frac{d\Gamma_{\rm L}}{dq^2} &= \frac{G_{\rm F}^2 |V_{\rm ub}|^2}{192\pi^3 m_{\rm B_c}^3} \left(1 - \frac{m_{\rm I}^2}{q^2}\right)^2 \frac{\lambda^{1/2}(q^2)}{2q^2} \cdot \left\{3m_{\rm I}^2\lambda(q^2)A_0^2(q^2)\right. \\ &+ \frac{m_{\rm I}^2 + 2q^2}{4m_{\rm M}^2} \cdot \left[(m_{\rm B_c}^2 - m_{\rm M}^2 - q^2)(m_{\rm B_c} + m_{\rm M})A_1(q^2) - \frac{\lambda(q^2)}{m_{\rm B_c} + m_{\rm M}}A_2(q^2)\right]^2 \right\},\end{aligned}$$

Longitude part:

$$\begin{aligned} \frac{d\Gamma_{\rm L}}{dq^2} &= \frac{G_{\rm F}^2 |V_{\rm ub}|^2}{192\pi^3 m_{\rm B_c}^3} \left(1 - \frac{m_{\rm l}^2}{q^2}\right)^2 \frac{\lambda^{1/2}(q^2)}{2q^2} \cdot \left\{3m_{\rm l}^2\lambda(q^2)A_0^2(q^2)\right. \\ &+ \frac{m_{\rm l}^2 + 2q^2}{4m_{\rm M}^2} \cdot \left[(m_{\rm B_c}^2 - m_{\rm M}^2 - q^2)(m_{\rm B_c} + m_{\rm M})A_1(q^2) - \frac{\lambda(q^2)}{m_{\rm B_c} + m_{\rm M}}A_2(q^2)\right]^2 \right\},\end{aligned}$$

Transverse part:

$$\begin{aligned} \frac{d\Gamma_{\pm}}{dq^2} &= \frac{G_F^2 |V_{\rm ub}|^2}{192\pi^3 m_{\rm B_c}^3} \left(1 - \frac{m_{\rm l}^2}{q^2}\right)^2 \frac{\lambda^{3/2}(q^2)}{2} \\ &\cdot \left\{ (m_{\rm l}^2 + 2q^2) \left[\frac{V(q^2)}{m_{\rm B_c} + m_{\rm M}} \mp \frac{(m_{\rm B_c} + m_{\rm M})A_1(q^2)}{\sqrt{\lambda(q^2)}} \right]^2 \right\}, \end{aligned}$$

Longitude part:

$$\begin{aligned} \frac{d\Gamma_{\rm L}}{dq^2} &= \frac{G_{\rm F}^2 |V_{\rm ub}|^2}{192\pi^3 m_{\rm B_c}^3} \left(1 - \frac{m_{\rm l}^2}{q^2}\right)^2 \frac{\lambda^{1/2}(q^2)}{2q^2} \cdot \left\{3m_{\rm l}^2\lambda(q^2)A_0^2(q^2)\right. \\ &+ \frac{m_{\rm l}^2 + 2q^2}{4m_{\rm M}^2} \cdot \left[(m_{\rm B_c}^2 - m_{\rm M}^2 - q^2)(m_{\rm B_c} + m_{\rm M})A_1(q^2) - \frac{\lambda(q^2)}{m_{\rm B_c} + m_{\rm M}}A_2(q^2)\right]^2\right\},\end{aligned}$$

Transverse part:

$$\begin{aligned} \frac{d\Gamma_{\pm}}{dq^2} &= \frac{G_F^2 |V_{\rm ub}|^2}{192\pi^3 m_{\rm B_c}^3} \left(1 - \frac{m_l^2}{q^2}\right)^2 \frac{\lambda^{3/2}(q^2)}{2} \\ &\cdot \left\{ (m_l^2 + 2q^2) \left[\frac{V(q^2)}{m_{\rm B_c} + m_{\rm M}} \mp \frac{(m_{\rm B_c} + m_{\rm M})A_1(q^2)}{\sqrt{\lambda(q^2)}}\right]^2 \right\} \end{aligned}$$

Total differential decay widths:

 $\frac{d\Gamma_T}{dq^2} = \frac{d\Gamma^+}{dq^2} + \frac{d\Gamma^-}{dq^2}, \qquad \frac{d\Gamma}{dq^2} = \frac{d\Gamma_L}{dq^2} + \frac{d\Gamma_T}{dq^2}.$

Transition matrix elements:

$$=> < M | J_{(A/V)} | Bc >$$

In PQCD factorization approach

$$A \sim \int dx_1 dx_2 b_1 db_1 b_2 db_2$$

 $\times Tr[\Phi_{Bc}(x_1, b_1)\Phi_M(x_2, b_2)H(x_i, b_i, t)e^{-s(t)}]$

Bc meson wave function

 $\Phi_{B_c}(x,b) = \frac{i}{\sqrt{2N_c}} (\not p_1 + m_{B_c}) \gamma_5 \phi_{B_c}(x,b).$

Bc meson distribution amplitudes

$$\phi_{B_c}(x,b) = \frac{f_{B_c}}{2\sqrt{2N_c}} N_{B_c} x(1-x) exp \left[-\frac{(1-x)m_c^2 + xm_b^2}{8\beta_{B_c}^2 x(1-x)} \right] exp \left[-2\beta_{B_c}^2 x(1-x)b^2 \right]$$

normalization constant N_{Bc} is fixed by the relation:

$$\int_{0}^{1} \phi_{B_{c}}(x, b=0) dx \equiv \int_{0}^{1} \phi_{B_{c}}(x) dx = \frac{f_{B_{c}}}{2\sqrt{2N_{c}}}$$

In order to analyze the uncertainties of theoretical predictions induced by the inputs, we set $\beta_{Bc} = 1.0 \pm 0.2$ Phys.Rev. D97 (2018) no.11, 113001 X. Liu, H.N. Li, Z.J. Xiao

 η_c meson wave function

$$\Phi_{\eta_c}(x) = \frac{i}{\sqrt{2N_c}} \gamma_5 [\not p \phi^v(x) + m_{\eta_c} \phi^s(x)].$$

η_c meson distribution amplitudes

$$\begin{split} \phi^v(x) &= 9.58 \frac{f_{\eta_c}}{2\sqrt{2N_c}} x(1-x) \left[\frac{x(1-x)}{1-2.8x(1-x)} \right]^{0.7} ,\\ \phi^s(x) &= 1.97 \frac{f_{\eta_c}}{2\sqrt{2N_c}} \left[\frac{x(1-x)}{1-2.8x(1-x)} \right]^{0.7} . \end{split}$$

J/ψ meson wave function

$$\Phi_{J/\Psi}^L(x) = \frac{1}{\sqrt{2N_c}} \left\{ m_{J/\Psi} \not \epsilon_L \phi^L(x) + \not \epsilon_L \not p \phi^t(x) \right\},$$

$$\Phi_{J/\Psi}^T(x) = \frac{1}{\sqrt{2N_c}} \left\{ m_{J/\Psi} \not \epsilon_T \phi^V(x) + \not \epsilon_T \not p \phi^T(x) \right\}.$$

J/ψ meson distribution amplitudes

$$\begin{split} \phi^L(x) &= \phi^T(x) = 9.58 \frac{f_{J/\Psi}}{2\sqrt{2N_c}} x(1-x) \left[\frac{x(1-x)}{1-2.8x(1-x)} \right]^{0.7} ,\\ \phi^t(x) &= 10.94 \frac{f_{J/\Psi}}{2\sqrt{2N_c}} (1-2x)^2 \left[\frac{x(1-x)}{1-2.8x(1-x)} \right]^{0.7} ,\\ \phi^V(x) &= 1.67 \frac{f_{J/\Psi}}{2\sqrt{2N_c}} [1+(2x-1)^2] \left[\frac{x(1-x)}{1-2.8x(1-x)} \right]^{0.7} . \end{split}$$

For example : $B_c \rightarrow \eta_c$

$$M(p_2)|\bar{q}(0)\gamma_{\mu}b(0)|B_c(p_1)\rangle =$$

Pseudo-scalar meson

$$= \left[(p_1 + p_2)_{\mu} - \frac{m_{B_c}^2 - m^2}{q^2} q_{\mu} \right] F_+(q^2) + \frac{m_{B_c}^2 - m^2}{q^2} q_{\mu} F_0(q^2),$$

For example : $B_c \rightarrow \eta_c$

$$\langle M (p_2) | \bar{q}(0) \gamma_{\mu} b(0) | B_c(p_1) \rangle = \left[(p_1 + p_2)_{\mu} - \frac{m_{B_c}^2 - m^2}{q^2} q_{\mu} \right] F_+(q^2)$$

$$+ \frac{m_{B_c}^2 - m^2}{q^2} q_{\mu} F_0(q^2),$$
Pseudo-scalar meson

Define the auxiliary form factors:

$$F_{+}(q^{2}) = \frac{1}{2} \left[f_{1}(q^{2}) + f_{2}(q^{2}) \right],$$

$$F_{0}(q^{2}) = \frac{1}{2} f_{1}(q^{2}) \left[1 + \frac{q^{2}}{m_{B_{c}}^{2} - m^{2}} \right] + \frac{1}{2} f_{2}(q^{2}) \left[1 - \frac{q^{2}}{m_{B_{c}}^{2} - m^{2}} \right],$$

For example : $B_c \rightarrow \eta_c$

$$\langle M (p_2) | \bar{q}(0) \gamma_{\mu} b(0) | B_c(p_1) \rangle = \left[(p_1 + p_2)_{\mu} - \frac{m_{B_c}^2 - m^2}{q^2} q_{\mu} \right] F_+(q^2)$$

$$+ \frac{m_{B_c}^2 - m^2}{q^2} q_{\mu} F_0(q^2),$$
Pseudo-scalar meson

Define the auxiliary form factors:

$$\begin{aligned} F_{+}(q^{2}) &= \frac{1}{2} \left[f_{1}(q^{2}) + f_{2}(q^{2}) \right], \\ F_{0}(q^{2}) &= \frac{1}{2} f_{1}(q^{2}) \left[1 + \frac{q^{2}}{m_{\rm B_{c}}^{2} - m^{2}} \right] + \frac{1}{2} f_{2}(q^{2}) \left[1 - \frac{q^{2}}{m_{\rm B_{c}}^{2} - m^{2}} \right], \end{aligned}$$

Then:

 $\langle M(p_2)|\bar{u}(0)\gamma^{\mu}b(0)|B_c(p_1)\rangle = p_1^{\mu}f_1(q^2) + p_2^{\mu}f_2(q^2).$

$$\begin{split} f_1(q^2) &= 8\pi m_{B_c}^2 C_F \int dx_1 dx_2 \int b_1 db_1 b_2 db_2 \ \phi_{B_c}(x_1, b_1) \\ &\times \Big\{ \Big[(-2r^2 x_2) \phi^v(x_2) + 2r(2 - r_b) \phi^s(x_2) \Big] \\ &\times h_1(x_1, x_2, b_1, b_2) \cdot \alpha_s(t_1) \exp\left[-S_{ab}(t_1) \right] \\ &+ \left[(-2r^2 + \frac{rx_1 \eta^+ \eta^+}{\sqrt{\eta^2 - 1}}) \phi^v(x_2) + (4rr_c - \frac{2x_1 r\eta^+}{\sqrt{\eta^2 - 1}}) \phi^s(x_2) \right] \\ &\times h_2(x_1, x_2, b_1, b_2) \cdot \alpha_s(t_2) \exp\left[-S_{ab}(t_2) \right] \Big\}, \\ f_2(q^2) &= 8\pi m_{B_c}^2 C_F \int dx_1 dx_2 \int b_1 db_1 b_2 db_2 \ \phi_{B_c}(x_1, b_1) \\ &\times \Big\{ [(4r_b - 2 + 4x_2 r\eta) \phi^v(x_2) + (-4rx_2) \phi^s(x_2)] \\ &\times h_1(x_1, x_2, b_1, b_2) \cdot \alpha_s(t_1) \exp\left[-S_{ab}(t_1) \right] \\ &+ \left[(-2r_c - \frac{x_1 \eta^+}{\sqrt{\eta^2 - 1}}) \phi^v(x_2) + (4r + \frac{2x_1}{\sqrt{\eta^2 - 1}}) \phi^s(x_2) \right] \\ &\times h_2(x_1, x_2, b_1, b_2) \cdot \alpha_s(t_2) \exp\left[-S_{ab}(t_2) \right] \Big\}, \end{split}$$

- PQCD predictions for the considered form factors are much more reliable at low q² region
- For the form factors in the larger q² region, one has to make an extrapolation
- 3. In this work we make the extrapolation by using the formula:

$$F(q^2) = F(0) \cdot \exp\left[a \cdot q^2 + b \cdot (q^2)^2\right].$$

 q^2 at 0~4 GeV² region : PQCD prediction

 q^2 at 4~10 GeV² region : Extrapolation

Numerical results of form factors:

	this work	LFQM	BSW	NRCQM
F ₀ (0)	0.56	0.61	0.58	0.49
F ₊ (0)	0.56	0.61	0.58	0.49
V(0)	0.75	0.74	0.91	0.61
$A_0(0)$	0.40	0.53	0.58	0.45
A ₁ (0)	0.47	0.5	0.63	0.49
A ₂ (0)	0.62	0.44	0.74	0.56

Numerical results of Br:

	this work	LFQM	SMEFT	PQCD
$B_c \rightarrow \eta_c \mu \nu$	0.78	0.67	0.48	0.44
$B_c \rightarrow \eta_c \tau \nu$	0.29	0.19	0.15	0.14
$B_c \rightarrow J/\psi\mu\nu$	1.66	1.49	1.14	1.03
$B_c \rightarrow J/\psi \tau v$	0.50	0.37	0.33	0.29

The theoretical uncertainties of Brs are large

 $\mathcal{B}(B_c \to \eta_c \tau \bar{\nu}_{\tau}) = \left(2.93^{+2.09}_{-1.19}(\beta_{\rm B_c}) \pm 0.22(V_{\rm cb}) \pm 0.08(m_{\rm c})\right) \times 10^{-3}, \\ \mathcal{B}(B_c \to \eta_c l \bar{\nu}_{\rm l}) = \left(7.87^{+5.55}_{-3.00}(\beta_{\rm B_c}) \pm 0.53(V_{\rm cb}) \pm 0.27(m_{\rm c})\right) \times 10^{-3}, \\ \mathcal{B}(B_c \to J/\psi \tau \bar{\nu}_{\tau}) = \left(4.98^{+3.77}_{-2.01}(\beta_{\rm B_c}) \pm 0.37(V_{\rm cb}) \pm 0.19(m_{\rm c})\right) \times 10^{-3}, \\ \mathcal{B}(B_c \to J/\psi l \bar{\nu}_{\rm l}) = \left(1.66^{+1.16}_{-0.64}(\beta_{\rm B_c}) \pm 0.12(V_{\rm cb}) \pm 0.06(m_{\rm c})\right) \times 10^{-2}.$

Main errors come from the parameter β_{Bc}

However, the theoretical uncertainties can be significantly reduced in the prediction for the ratio of branching ratios.

 $R(\eta_c) = 0.373^{+0.001}_{-0.016}$

 $R(J/\psi) = 0.300^{+0.010}_{-0.008}$

The error of the PQCD predictions for all R(X)-ratios are around ~ 10% only

Summary

- 1. PQCD predictions for the branching ratios $B_c \rightarrow (\eta_c, J/\psi)$ l v agree well with other SM predictions.
- 2. Although the theoretical uncertainties of Brs are large, The error of the $R(\eta_c)$ and $R(J/\psi)$ are around ~ 10% only.
- 3. There is still a discrepancy since the experiment result is $R(J/\psi)=0.71\pm0.17(stat)\pm0.18(syst)$.

Thank you