HFCPV－2018

Study of semileptonic decays $B_{c} \rightarrow\left(\eta_{c}, J / \psi\right) l v$ in PQCD factorization approach

X．Q．Hu，Z．J．Xiao
Nanjing Normal University

河南工业大学 2018．10．27

Outline

- Motivation
- Framework
- Contents
- Results
- Summary

Motivation

$B_{(u, d, s, c)}$ meson semileptonic decay

- Determination of CKM

$$
\text { (For example: }\left|\mathrm{V}_{\mathrm{cb}}\right| \text { in } B \rightarrow D l v \text {) }
$$

- Examination of SM (HQET, NRQCD, LFQM etc.)
- Hints of new physics (2HDM, MSSM, Leptoquark mode etc.)

$\mathbf{R}\left(\mathbf{D}^{(*)}\right)$ Anomaly

$R(D)=\frac{B r(B \rightarrow D \tau v)}{B r(B \rightarrow D l v)}$
$R\left(D^{*}\right)=\frac{B r\left(B \rightarrow D^{*} \tau v\right)}{B r\left(B \rightarrow D^{*} l \nu\right)}$
$l=e, \mu$

$\mathbf{R}\left(\mathbf{D}^{(*)}\right)$ Anomaly

$R(D)=\frac{B r(B \rightarrow D \tau v)}{B r(B \rightarrow D t v)}$
$R\left(D^{*}\right)=\frac{B r\left(B \rightarrow D^{*} \tau v\right)}{B r\left(B \rightarrow D^{*} \psi v\right)}$
$l=e, \mu$

1. The theoretical uncertainties of each branching ratio are large.
2. It mainly comes from the Form Factors and V_{cb}.
3. The theoretical uncertainties in $\mathrm{R}\left(\mathrm{D}^{(*)}\right)$ are significantly reduced.

$\mathbf{R}\left(\mathbf{D}^{(*)}\right)$ Anomaly

R(J/ ψ) Anomaly

$$
\begin{aligned}
& R(J / \psi)=0.71 \pm 0.17(\text { stat }) \pm 0.18(\text { syst }) \\
& R(J / \psi) \equiv \frac{B r(B c \rightarrow J / \psi \tau v)}{B r(B c \rightarrow J / \psi \mu v)} \in[0.25,0.28]
\end{aligned}
$$

SM
PhysRevLett. 120 (2018) 121801

R(J/ $/$) Anomaly

$$
\begin{aligned}
& R(J / \psi)=0.71 \pm 0.17(\text { stat }) \pm 0.18(\text { syst }) \\
& R(J / \psi) \equiv \frac{B r(B c \rightarrow J / \psi \tau v)}{B r(B c \rightarrow J / \psi \mu v)} \in[0.25,0.28]
\end{aligned}
$$

PhysRevLett. 120 (2018) 121801

R(J/ $/$) Anomaly

$$
\begin{aligned}
& R(J / \psi)=0.71 \pm 0.17(\text { stat }) \pm 0.18(\text { syst }) \\
& R(J / \psi) \equiv \frac{B r(B c \rightarrow J / \psi \tau v)}{B r(B c \rightarrow J / \psi \mu \nu)} \in[0.25,0.28]
\end{aligned}
$$

SM
PhysRevLett. 120 (2018) 121801

Calculate the $R(J / \psi)$ in PQCD factorization approach

Framework

Framework

$$
B_{c} \rightarrow\left(\eta_{c}, J / \psi\right) l v \quad l=e, \mu, \tau
$$

Quark level

LO diagrams

Framework

$$
\mathcal{H}_{e f f}\left(b \rightarrow c l \bar{\nu}_{l}\right)=\frac{G_{F}}{\sqrt{2}} V_{c b} \bar{c} \gamma_{\mu}\left(1-\gamma_{5}\right) b \cdot \bar{l} \gamma^{\mu}\left(1-\gamma_{5}\right) \nu_{l}
$$

Effective Hamiltonian

Framework

$\mathcal{H}_{e f f}\left(b \rightarrow c l \bar{\nu}_{l}\right)=\frac{G_{F}}{\sqrt{2}} V_{c b} \bar{c} \gamma_{\mu}\left(1-\gamma_{5}\right) b \cdot \bar{l} \gamma^{\mu}\left(1-\gamma_{5}\right) \nu_{l}$

Effective Hamiltonian

Effective Diagrams

Form Factors

Definition of Form Factors:

Form Factors

Definition of Form Factors:
For $B_{c} \rightarrow \eta_{c}$ transition
$\left\langle M\left(p_{2}\right)\right| \bar{q}(0) \gamma_{\mu} b(0)\left|B_{c}\left(p_{1}\right)\right\rangle=\left[\left(p_{1}+p_{2}\right)_{\mu}-\frac{m_{B_{c}}^{2}-m^{2}}{q^{2}} q_{\mu}\right] F_{+}\left(q^{2}\right)$

Pseudo-scalar meson

$$
+\frac{m_{B_{c}}^{2}-m^{2}}{q^{2}} q_{\mu} F_{0}\left(q^{2}\right)
$$

Form Factors

Definition of Form Factors:

For $B_{c} \rightarrow \eta_{c}$ transition
$\left\langle M\left(p_{2}\right)\right| \bar{q}(0) \gamma_{\mu} b(0)\left|B_{c}\left(p_{1}\right)\right\rangle=\left[\left(p_{1}+p_{2}\right)_{\mu}-\frac{m_{B_{c}}^{2}-m^{2}}{q^{2}} q_{\mu}\right] F_{+}\left(q^{2}\right)$

Pseudo-scalar meson

$$
+\frac{m_{B_{c}}^{2}-m^{2}}{q^{2}} q_{\mu} F_{0}\left(q^{2}\right),
$$

For $B_{C} \rightarrow J / \Psi$ transition
$\left\langle M\left(p_{2}\right)\right| \bar{q}(0) \gamma_{\mu} b(0)\left|B_{c}\left(p_{1}\right)\right\rangle=\epsilon_{\mu \nu \alpha \beta} \epsilon^{\nu *} p_{1}^{\alpha} p_{2}^{\beta} \frac{2 V\left(q^{2}\right)}{m_{B_{c}}+m}$,
$\left\langle M\left(p_{2}\right)\right| \bar{q}(0) \gamma_{\mu} \gamma_{5} b(0)\left|B_{c}\left(p_{1}\right)\right\rangle=i\left[\epsilon_{\mu}^{*}-\frac{\epsilon^{*} \cdot q}{q^{2}} q_{\mu}\right]\left(m_{B_{c}}+m\right) A_{1}\left(q^{2}\right)$

Vector meson

$$
\begin{aligned}
& -i\left[\left(p_{1}+p_{2}\right)_{\mu}-\frac{m_{B_{c}}^{2}-m^{2}}{q^{2}} q_{\mu}\right]\left(\epsilon^{*} \cdot q\right) \frac{A_{2}\left(q^{2}\right)}{m_{B_{c}}+m} \\
& +i \frac{2 m\left(\epsilon^{*} \cdot q\right)}{q^{2}} q_{\mu} A_{0}\left(q^{2}\right)
\end{aligned}
$$

Branching Ratio

Branching Ratio

For $B_{c} \rightarrow \eta_{c} l v$

$$
\begin{aligned}
& \begin{aligned}
\frac{d \Gamma\left(b \rightarrow c l \bar{\nu}_{l}\right)}{d q^{2}}= & \frac{G_{F}^{2}\left|V_{c b}\right|^{2}}{192 \pi^{3} m_{B}^{3}}\left(1-\frac{m_{l}^{2}}{q^{2}}\right)^{2} \frac{\lambda^{1 / 2}\left(q^{2}\right)}{2 q^{2}} \cdot\left\{3 m_{l}^{2}\left(m_{B}^{2}-m_{D}^{2}\right)^{2}\left|F_{0}\left(q^{2}\right)\right|^{2}\right. \\
& \left.+\left(m_{l}^{2}+2 q^{2}\right) \lambda\left(q^{2}\right)\left|F_{+}\left(q^{2}\right)\right|^{2}\right\},
\end{aligned} \\
& \lambda\left(q^{2}\right)=\left(m_{B}^{2}+\right.\left.m_{D^{*}}^{2}-q^{2}\right)^{2}-4 m_{B}^{2} m_{D^{*}}^{2}
\end{aligned}
$$

Branching Ratio

For $B_{c} \rightarrow \eta_{c} l v$

$$
\left.\begin{array}{rl}
\begin{array}{l}
\frac{d \Gamma\left(b \rightarrow c l \bar{\nu}_{l}\right)}{d q^{2}}=
\end{array} & \frac{G_{F}^{2}\left|V_{c b}\right|^{2}}{192 \pi^{3} m_{B}^{3}}\left(1-\frac{m_{l}^{2}}{q^{2}}\right)^{2} \frac{\lambda^{1 / 2}\left(q^{2}\right)}{2 q^{2}} \cdot\left\{3 m_{l}^{2}\left(m_{B}^{2}-m_{D}^{2}\right)^{2}\left|F_{0}\left(q^{2}\right)\right|^{2}\right. \\
& \left.+\left(m_{l}^{2}+2 q^{2}\right) \lambda\left(q^{2}\right)\left|F_{+}\left(q^{2}\right)\right|^{2}\right\},
\end{array}\right\} \begin{aligned}
& \lambda\left(q^{2}\right)=\left(m_{B}^{2}+\right. \\
& \left.m_{D^{*}}^{2}-q^{2}\right)^{2}-4 m_{B}^{2} m_{D^{*}}^{2}
\end{aligned}
$$

For $B_{c} \rightarrow J / \Psi l v$

Branching Ratio

Longitude part:

$$
\begin{aligned}
& \quad \frac{d \Gamma_{\mathrm{L}}}{d q^{2}}=\frac{G_{\mathrm{F}}^{2}\left|V_{\mathrm{ub}}\right|^{2}}{192 \pi^{3} m_{\mathrm{B}_{\mathrm{c}}}^{3}}\left(1-\frac{m_{1}^{2}}{q^{2}}\right)^{2} \frac{\lambda^{1 / 2}\left(q^{2}\right)}{2 q^{2}} \cdot\left\{3 m_{1}^{2} \lambda\left(q^{2}\right) A_{0}^{2}\left(q^{2}\right)\right. \\
& \left.+\frac{m_{1}^{2}+2 q^{2}}{4 m_{\mathrm{M}}^{2}} \cdot\left[\left(m_{\mathrm{B}_{\mathrm{c}}}^{2}-m_{\mathrm{M}}^{2}-q^{2}\right)\left(m_{\mathrm{B}_{\mathrm{c}}}+m_{\mathrm{M}}\right) A_{1}\left(q^{2}\right)-\frac{\lambda\left(q^{2}\right)}{m_{\mathrm{B}_{\mathrm{c}}}+m_{\mathrm{M}}} A_{2}\left(q^{2}\right)\right]^{2}\right\},
\end{aligned}
$$

Branching Ratio

Longitude part:

$$
\begin{gathered}
\quad \frac{d \Gamma_{\mathrm{L}}}{d q^{2}}=\frac{G_{\mathrm{F}}^{2}\left|V_{\mathrm{ub}}\right|^{2}}{192 \pi^{3} m_{\mathrm{B}_{\mathrm{c}}}^{3}}\left(1-\frac{m_{\mathrm{l}}^{2}}{q^{2}}\right)^{2} \frac{\lambda^{1 / 2}\left(q^{2}\right)}{2 q^{2}} \cdot\left\{3 m_{1}^{2} \lambda\left(q^{2}\right) A_{0}^{2}\left(q^{2}\right)\right. \\
\left.+\frac{m_{1}^{2}+2 q^{2}}{4 m_{\mathrm{M}}^{2}} \cdot\left[\left(m_{\mathrm{B}_{\mathrm{c}}}^{2}-m_{\mathrm{M}}^{2}-q^{2}\right)\left(m_{\mathrm{B}_{\mathrm{c}}}+m_{\mathrm{M}}\right) A_{1}\left(q^{2}\right)-\frac{\lambda\left(q^{2}\right)}{m_{\mathrm{B}_{\mathrm{c}}}+m_{\mathrm{M}}} A_{2}\left(q^{2}\right)\right]^{2}\right\},
\end{gathered}
$$

Transverse part:

$$
\begin{aligned}
\frac{d \Gamma_{ \pm}}{d q^{2}}= & \frac{G_{F}^{2}\left|V_{\mathrm{ub}}\right|^{2}}{192 \pi^{3} m_{\mathrm{B}_{\mathrm{c}}}^{3}}\left(1-\frac{m_{1}^{2}}{q^{2}}\right)^{2} \frac{\lambda^{3 / 2}\left(q^{2}\right)}{2} \\
& \cdot\left\{\left(m_{1}^{2}+2 q^{2}\right)\left[\frac{V\left(q^{2}\right)}{m_{\mathrm{B}_{\mathrm{c}}}+m_{\mathrm{M}}} \mp \frac{\left(m_{\mathrm{B}_{\mathrm{c}}}+m_{\mathrm{M}}\right) A_{1}\left(q^{2}\right)}{\sqrt{\lambda\left(q^{2}\right)}}\right]^{2}\right\},
\end{aligned}
$$

Branching Ratio

Longitude part:

$$
\begin{gathered}
\quad \frac{d \Gamma_{\mathrm{L}}}{d q^{2}}=\frac{G_{\mathrm{F}}^{2}\left|V_{\mathrm{ub}}\right|^{2}}{192 \pi^{3} m_{\mathrm{B}_{\mathrm{c}}}^{3}}\left(1-\frac{m_{\mathrm{l}}^{2}}{q^{2}}\right)^{2} \frac{\lambda^{1 / 2}\left(q^{2}\right)}{2 q^{2}} \cdot\left\{3 m_{1}^{2} \lambda\left(q^{2}\right) A_{0}^{2}\left(q^{2}\right)\right. \\
\left.+\frac{m_{1}^{2}+2 q^{2}}{4 m_{\mathrm{M}}^{2}} \cdot\left[\left(m_{\mathrm{B}_{\mathrm{c}}}^{2}-m_{\mathrm{M}}^{2}-q^{2}\right)\left(m_{\mathrm{B}_{\mathrm{c}}}+m_{\mathrm{M}}\right) A_{1}\left(q^{2}\right)-\frac{\lambda\left(q^{2}\right)}{m_{\mathrm{B}_{\mathrm{c}}}+m_{\mathrm{M}}} A_{2}\left(q^{2}\right)\right]^{2}\right\},
\end{gathered}
$$

Transverse part:

$$
\begin{aligned}
\frac{d \Gamma_{ \pm}}{d q^{2}}= & \frac{G_{F}^{2}\left|V_{\mathrm{ub}}\right|^{2}}{192 \pi^{3} m_{\mathrm{B}_{\mathrm{c}}}^{3}}\left(1-\frac{m_{1}^{2}}{q^{2}}\right)^{2} \frac{\lambda^{3 / 2}\left(q^{2}\right)}{2} \\
& \cdot\left\{\left(m_{1}^{2}+2 q^{2}\right)\left[\frac{V\left(q^{2}\right)}{m_{\mathrm{B}_{\mathrm{c}}}+m_{\mathrm{M}}} \mp \frac{\left(m_{\mathrm{B}_{\mathrm{c}}}+m_{\mathrm{M}}\right) A_{1}\left(q^{2}\right)}{\sqrt{\lambda\left(q^{2}\right)}}\right]^{2}\right\},
\end{aligned}
$$

Total differential decay widths:
$\frac{d \boldsymbol{\Gamma}_{T}}{d q^{2}}=\frac{d \Gamma^{+}}{d q^{2}}+\frac{d \Gamma^{-}}{d q^{2}}, \quad \frac{d \Gamma}{d q^{2}}=\frac{d \Gamma_{L}}{d q^{2}}+\frac{d \Gamma_{T}}{d q^{2}}$.

Contents

Transition matrix elements:

$$
=>\quad<M\left|J_{(A / V)}\right| B c>
$$

In PQCD factorization approach

$$
\begin{aligned}
& A \sim \int d x_{1} d x_{2} b_{1} d b_{1} b_{2} d b_{2} \\
& \times \operatorname{Tr}\left[\Phi_{B c}\left(x_{1}, b_{1}\right) \Phi_{M}\left(x_{2}, b_{2}\right) H\left(x_{i}, b_{i}, t\right) e^{-s(t)}\right]
\end{aligned}
$$

Contents

Bc meson wave function

$$
\Phi_{B_{c}}(x, b)=\frac{i}{\sqrt{2 N_{c}}}\left(\not p_{1}+m_{B_{c}}\right) \gamma_{5} \phi_{B_{c}}(x, b) .
$$

Bc meson distribution amplitudes
$\phi_{B_{c}}(x, b)=\frac{f_{B_{c}}}{2 \sqrt{2 N_{c}}} N_{B_{c}} x(1-x) \exp \left[-\frac{(1-x) m_{c}^{2}+x m_{b}^{2}}{8 \beta_{B_{c}}^{2} x(1-x)}\right] \exp \left[-2 \beta_{B_{c}}^{2} x(1-x) b^{2}\right]$
normalization constant $N_{B C}$ is fixed by the relation:
$\int_{0}^{1} \phi_{B_{c}}(x, b=0) d x \equiv \int_{0}^{1} \phi_{B_{c}}(x) d x=\frac{f_{B_{c}}}{2 \sqrt{2 N_{c}}}$
In order to analyze the uncertainties of theoretical predictions induced by the inputs, we set $\beta_{B C}=1.0 \pm 0.2$

Phys.Rev. D97 (2018) no.11, 113001
X. Liu, H.N. Li, Z.J. Xiao

Contents

η_{c} meson wave function

$$
\Phi_{\eta_{c}}(x)=\frac{i}{\sqrt{2 N_{c}}} \gamma_{5}\left[\not p \phi^{v}(x)+m_{\eta_{c}} \phi^{s}(x)\right] .
$$

η_{c} meson distribution amplitudes

$$
\begin{aligned}
\phi^{v}(x) & =9.58 \frac{f_{\eta_{c}}}{2 \sqrt{2 N_{c}}} x(1-x)\left[\frac{x(1-x)}{1-2.8 x(1-x)}\right]^{0.7}, \\
\phi^{s}(x) & =1.97 \frac{f_{\eta_{c}}}{2 \sqrt{2 N_{c}}}\left[\frac{x(1-x)}{1-2.8 x(1-x)}\right]^{0.7}
\end{aligned}
$$

Contents

J/ ψ meson wave function

$$
\begin{aligned}
& \Phi_{J / \Psi}^{L}(x)=\frac{1}{\sqrt{2 N_{c}}}\left\{m_{J / \Psi} k_{L} \phi^{L}(x)+\xi_{L} \not p \phi^{t}(x)\right\}, \\
& \Phi_{J / \Psi}^{T}(x)=\frac{1}{\sqrt{2 N_{c}}}\left\{m_{J / \Psi} k_{T} \phi^{V}(x)+\xi_{T} \not p \phi^{T}(x)\right\} .
\end{aligned}
$$

J / ψ meson distribution amplitudes

$$
\begin{aligned}
& \phi^{L}(x)=\phi^{T}(x)=9.58 \frac{f_{J / \Psi}}{2 \sqrt{2 N_{c}}} x(1-x)\left[\frac{x(1-x)}{1-2.8 x(1-x)}\right]^{0.7} \\
& \phi^{t}(x)=10.94 \frac{f_{J / \Psi}}{2 \sqrt{2 N_{c}}}(1-2 x)^{2}\left[\frac{x(1-x)}{1-2.8 x(1-x)}\right]^{0.7}, \\
& \phi^{V}(x)=1.67 \frac{f_{J / \Psi}}{2 \sqrt{2 N_{c}}}\left[1+(2 x-1)^{2}\right]\left[\frac{x(1-x)}{1-2.8 x(1-x)}\right]^{0.7} .
\end{aligned}
$$

Contents

For example : $B_{c} \rightarrow \eta_{c}$
$\left\langle M\left(p_{2}\right)\right| \bar{q}(0) \gamma_{\mu} b(0)\left|B_{c}\left(p_{1}\right)\right\rangle=\left[\left(p_{1}+p_{2}\right)_{\mu}-\frac{m_{B_{c}}^{2}-m^{2}}{q^{2}} q_{\mu}\right] F_{+}\left(q^{2}\right)$

Pseudo-scalar meson

$$
+\frac{m_{B_{c}}^{2}-m^{2}}{q^{2}} q_{\mu} F_{0}\left(q^{2}\right)
$$

Contents

For example : $B_{c} \rightarrow \eta_{c}$
$\left\langle M\left(p_{2}\right)\right| \bar{q}(0) \gamma_{\mu} b(0)\left|B_{c}\left(p_{1}\right)\right\rangle=\left[\left(p_{1}+p_{2}\right)_{\mu}-\frac{m_{B_{c}}^{2}-m^{2}}{q^{2}} q_{\mu}\right] F_{+}\left(q^{2}\right)$

Pseudo-scalar meson

$$
+\frac{m_{B_{c}}^{2}-m^{2}}{q^{2}} q_{\mu} F_{0}\left(q^{2}\right),
$$

Define the auxiliary form factors:
$F_{+}\left(q^{2}\right)=\frac{1}{2}\left[f_{1}\left(q^{2}\right)+f_{2}\left(q^{2}\right)\right]$,
$F_{0}\left(q^{2}\right)=\frac{1}{2} f_{1}\left(q^{2}\right)\left[1+\frac{q^{2}}{m_{\mathrm{B}_{\mathrm{c}}}^{2}-m^{2}}\right]+\frac{1}{2} f_{2}\left(q^{2}\right)\left[1-\frac{q^{2}}{m_{\mathrm{B}_{\mathrm{c}}}^{2}-m^{2}}\right]$,

Contents

For example : $B_{c} \rightarrow \eta_{c}$
$\left\langle M\left(p_{2}\right)\right| \bar{q}(0) \gamma_{\mu} b(0)\left|B_{c}\left(p_{1}\right)\right\rangle=\left[\left(p_{1}+p_{2}\right)_{\mu}-\frac{m_{B_{c}}^{2}-m^{2}}{q^{2}} q_{\mu}\right] F_{+}\left(q^{2}\right)$

Pseudo-scalar meson

$$
+\frac{m_{B_{c}}^{2}-m^{2}}{q^{2}} q_{\mu} F_{0}\left(q^{2}\right),
$$

Define the auxiliary form factors:
$F_{+}\left(q^{2}\right)=\frac{1}{2}\left[f_{1}\left(q^{2}\right)+f_{2}\left(q^{2}\right)\right]$,
$F_{0}\left(q^{2}\right)=\frac{1}{2} f_{1}\left(q^{2}\right)\left[1+\frac{q^{2}}{m_{\mathrm{B}_{\mathrm{c}}}^{2}-m^{2}}\right]+\frac{1}{2} f_{2}\left(q^{2}\right)\left[1-\frac{q^{2}}{m_{\mathrm{B}_{\mathrm{c}}}^{2}-m^{2}}\right]$,
Then:
$\left\langle M\left(p_{2}\right)\right| \bar{u}(0) \gamma^{\mu} b(0)\left|B_{c}\left(p_{1}\right)\right\rangle=p_{1}^{\mu} f_{1}\left(q^{2}\right)+p_{2}^{\mu} f_{2}\left(q^{2}\right)$.

Contents

$$
\begin{aligned}
f_{1}\left(q^{2}\right) & =8 \pi m_{B_{c}}^{2} C_{F} \int d x_{1} d x_{2} \int b_{1} d b_{1} b_{2} d b_{2} \phi_{B_{c}}\left(x_{1}, b_{1}\right) \\
& \times\left\{\left[\left(-2 r^{2} x_{2}\right) \phi^{v}\left(x_{2}\right)+2 r\left(2-r_{b}\right) \phi^{s}\left(x_{2}\right)\right]\right. \\
& \times h_{1}\left(x_{1}, x_{2}, b_{1}, b_{2}\right) \cdot \alpha_{s}\left(t_{1}\right) \exp \left[-S_{a b}\left(t_{1}\right)\right] \\
& +\left[\left(-2 r^{2}+\frac{r x_{1} \eta^{+} \eta^{+}}{\sqrt{\eta^{2}-1}}\right) \phi^{v}\left(x_{2}\right)+\left(4 r r_{c}-\frac{2 x_{1} r \eta^{+}}{\sqrt{\eta^{2}-1}}\right) \phi^{s}\left(x_{2}\right)\right] \\
& \left.\times h_{2}\left(x_{1}, x_{2}, b_{1}, b_{2}\right) \cdot \alpha_{s}\left(t_{2}\right) \exp \left[-S_{a b}\left(t_{2}\right)\right]\right\} \\
f_{2}\left(q^{2}\right) & =8 \pi m_{B_{c}}^{2} C_{F} \int d x_{1} d x_{2} \int b_{1} d b_{1} b_{2} d b_{2} \phi_{B_{c}}\left(x_{1}, b_{1}\right) \\
& \times\left\{\left[\left(4 r_{b}-2+4 x_{2} r \eta\right) \phi^{v}\left(x_{2}\right)+\left(-4 r x_{2}\right) \phi^{s}\left(x_{2}\right)\right]\right. \\
& \times h_{1}\left(x_{1}, x_{2}, b_{1}, b_{2}\right) \cdot \alpha_{s}\left(t_{1}\right) \exp \left[-S_{a b}\left(t_{1}\right)\right] \\
& +\left[\left(-2 r_{c}-\frac{x_{1} \eta^{+}}{\sqrt{\eta^{2}-1}}\right) \phi^{v}\left(x_{2}\right)+\left(4 r+\frac{2 x_{1}}{\sqrt{\eta^{2}-1}}\right) \phi^{s}\left(x_{2}\right)\right] \\
& \left.\times h_{2}\left(x_{1}, x_{2}, b_{1}, b_{2}\right) \cdot \alpha_{s}\left(t_{2}\right) \exp \left[-S_{a b}\left(t_{2}\right)\right]\right\}
\end{aligned}
$$

Contents

1. PQCD predictions for the considered form factors are much more reliable at low q^{2} region
2. For the form factors in the larger q^{2} region, one has to make an extrapolation
3. In this work we make the extrapolation by using the formula:

$$
F\left(q^{2}\right)=F(0) \cdot \exp \left[a \cdot q^{2}+b \cdot\left(q^{2}\right)^{2}\right]
$$

Contents

$$
B_{c} \rightarrow \eta_{c} l v \quad(l=e, \mu, \tau)
$$

Contents

$$
B_{c} \rightarrow \eta_{c} l v \quad(l=e, \mu, \tau)
$$

q^{2} at $0 \sim 4 \mathrm{GeV}^{2}$ region : $P Q C D$ prediction q^{2} at 4~10 GeV ${ }^{2}$ region : Extrapolation

Contents

$$
B_{c} \rightarrow J / \psi l v \quad(l=e, \mu, \tau)
$$

Result

Numerical results of form factors:

	this work	LFQM	BSW	NRCQM
$\mathrm{F}_{0}(0)$	0.56	0.61	0.58	0.49
$\mathrm{~F}_{+}(0)$	0.56	0.61	0.58	0.49
$\mathrm{~V}(0)$	0.75	0.74	0.91	0.61
$\mathrm{~A}_{0}(0)$	0.40	0.53	0.58	0.45
$\mathrm{~A}_{1}(0)$	0.47	0.5	0.63	0.49
$\mathrm{~A}_{2}(0)$	0.62	0.44	0.74	0.56

Result

Numerical results of Br:

$B_{c} \rightarrow \eta_{c} \mu \nu$	this work	LFQM	SMEFT	PQCD
$B_{c} \rightarrow \eta_{c} \tau v$	0.29	0.67	0.48	0.44
$B_{c} \rightarrow \mathrm{~J} / \psi \mu \nu$	1.66	1.49	0.15	0.14
$B_{c} \rightarrow \mathrm{~J} / \psi \tau \nu$	0.50	0.37	0.14	1.03

Result

The theoretical uncertainties of Brs are large

$$
\begin{aligned}
\mathcal{B}\left(B_{c} \rightarrow \eta_{c} \tau \bar{\nu}_{\tau}\right) & =\left(2.93_{-1.19}^{+2.09}\left(\beta_{\mathrm{B}_{\mathrm{c}}}\right) \pm 0.22\left(V_{\mathrm{cb}}\right) \pm 0.08\left(m_{\mathrm{c}}\right)\right) \times 10^{-3}, \\
\mathcal{B}\left(B_{c} \rightarrow \eta_{c} \bar{\nu}_{1}\right) & =\left(7.87_{-3.00}^{+5.55}\left(\beta_{\mathrm{B}_{\mathrm{c}}}\right) \pm 0.53\left(V_{\mathrm{cb}}\right) \pm 0.27\left(m_{\mathrm{c}}\right)\right) \times 10^{-3}, \\
\mathcal{B}\left(B_{c} \rightarrow J / \psi \tau \bar{\nu}_{\tau}\right) & =\left(4.98_{-2.01}^{+3.7}\left(\beta_{\mathrm{B}_{\mathrm{c}}}\right) \pm 0.37\left(V_{\mathrm{cb}}\right) \pm 0.19\left(m_{\mathrm{c}}\right)\right) \times 10^{-3}, \\
\mathcal{B}\left(B_{c} \rightarrow J / \psi l \bar{\nu}_{\mathrm{l}}\right) & =\left(1.66_{-0.64}^{+1.16}\left(\beta_{\mathrm{B}_{\mathrm{c}}}\right) \pm 0.12\left(V_{\mathrm{cb}}\right) \pm 0.06\left(m_{\mathrm{c}}\right)\right) \times 10^{-2} .
\end{aligned}
$$

Main errors come from the parameter $\beta_{B c}$

Result

However, the theoretical uncertainties can be significantly reduced in the prediction for the ratio of branching ratios .
$R\left(\eta_{c}\right)=0.373_{-0.016}^{+0.001}$
$R(J / \psi)=0.300_{-0.008}^{+0.010}$

The error of the $P Q C D$ predictions for all $R(X)$-ratios are around $\sim 10 \%$ only

Summary

1. PQCD predictions for the branching ratios B_{c} $\rightarrow\left(\eta_{c}, J / \psi\right) l v$ agree well with other $S M$ predictions.
2. Although the theoretical uncertainties of Brs are large, The error of the $R\left(\eta_{c}\right)$ and $R(J / \psi)$ are around $\sim 10 \%$ only.
3. There is still a discrepancy since the experiment result is $R(J / \psi)=0.71 \pm 0.17$ (stat) ± 0.18 (syst).

Thank you

