Production of doubly heavy-flavored hadrons at e⁺e⁻ colliders

Xu-Chang Zheng (郑绪昌)

Department of Physics, Chongqing University

Based on Xu-Chang Zheng and Chao-Hsi Chang et al,

Phys.Rev. D93 (2016), 034019 ;Sci.China Phys.Mech.Astron. 61 (2018), 031012.

HFCPV-2018@Henan University of Technology

Outline

- 1. Introduction
- 2. Production of doubly heavy-flavored hadrons
- 3. NLO fragmentation functions for Bc(Bc*) production
- 4. Conclusions and outlook

1. Introduction

Heavy flavor hadron: A hadron containing c- or b-quark Heavy quarkonium: $c\bar{c}$, $b\bar{b}$ (J/ Ψ , Υ ...) Explicit double heavy-flavored meson: $c\bar{b}$ (B_c , B_c^* ...) Double heavy baryon: QQ'q

Production: perturbative, non-perturbative QCD

Decay: weak interaction

Advantages of the production at e⁺e⁻ colliders:

• The center-of-mass system of the process is known

Angle distributions and forward-backward asymmetry of hadrons have proper meaning in understanding the production.

There are less backgrounds at an e⁺e⁻ collider
 e⁺e⁻ collider is a good platform for precision measurements.
 Running at Z-pole:

Z-resonance effect

• ILC, FCC-ee, CEPC and Super Z-factory

2, Production of doubly heavy-flavored hadrons

LO calculation

 $d\sigma(e^+ + e^- \rightarrow Bc + b + \overline{c})$ $= \sum_{n} d\hat{\sigma}(e^{+} + e^{-} \rightarrow c\overline{b}[n] + b + \overline{c}) \langle O^{Bc}(n) \rangle \qquad \text{NRQCD factorization}$

Numerical results

Phys. Rev. D 93, 034019, (2016), Xu-Chang Zheng, Chao-Hsi Chang et al.

$\operatorname{contribution}$	total	\bar{b} -frag.	c-frag.	interference
$\sigma(B_c, {}^1S_0)$	2.734	2.613	5.20×10^{-2}	6.90×10^{-2}
$\sigma(B_c^*, {}^{3}S_1)$	3.823	3.722	4.45×10^{-2}	5.65×10^{-2}
$\sigma(B_c^{**}, {}^1P_1)$	0.271	0.269	3.01×10^{-3}	-1.01×10^{-3}
$\sigma(B_c^{**}, {}^{3}P_0)$	0.164	0.157	8.13×10^{-3}	-1.13×10^{-3}
$\sigma(B_c^{**}, {}^{3}P_1)$	0.340	0.331	5.77×10^{-3}	3.23×10^{-3}
$\sigma(B_c^{**}, {}^{3}P_2)$	0.365	0.366	$3.87{\times}10^{-4}$	-1.39×10^{-3}

Cross section at Z pole (unit: pb)

Contribution	Total	\bar{b} frag.	c frag.
$\sigma(B_c, {}^1S_0)$	2.851	2.792	5.88×10^{-2}
$\sigma(B_c^*, {}^3S_1)$	3.974	3.923	5.08×10^{-2}
$\sigma(B_{c}^{**}, {}^{1}P_{1})$	0.296	0.292	3.53×10^{-3}
$\sigma(B_{c}^{**}, {}^{3}P_{0})$	0.169	0.160	9.08×10^{-3}
$\sigma(B_{c}^{**}, {}^{3}P_{1})$	0.361	0.354	6.59×10^{-3}
$\sigma(B_c^{**}, {}^3P_2)$	0.395	0.395	4.74×10^{-4}

$\sqrt{s}(\text{GeV})$	180	240
$\sigma(B_c, {}^1S_0)$	1.05	0.47
$\sigma(B_{c}^{*}, {}^{3}S_{1})$	1.55	0.72
$\sigma(B_c^{**}, {}^1P_1)$	0.11	0.05
$\sigma(B_c^{**}, {}^{3}P_0)$	0.07	0.03
$\sigma(B_c^{**}, {}^{3}P_1)$	0.14	0.07
$\sigma(B_c^{**}, {}^{3}P_2)$	0.15	0.07

Cross section at other energies (unit: fb)

The luminosity of Z factory should be 10^{35-36} cm⁻² s⁻¹

Results under fragmentation approach(unit: pb)

Xu-Chang Zheng(CQU)

Production of doubly heavy-flavored hadrons 2018/10/27

Phys. Rev. D 93, 034019, (2016), Xu-Chang Zheng, Chao-Hsi Chang et al.

The angle distribution is forwardbackward asymmetric.

Xu-Chang Zheng(CQU)

Production of doubly heavy-flavored hadrons

Phys. Rev. D 93, 034019, (2016), Xu-Chang Zheng, Chao-Hsi Chang et al.

Production of doubly heavy baryons

1) Production of diquark

2) The diquark fragments into the doubly heavy baryon

Production of doubly heavy-flavored hadrons

Phys. Rev. D 93, 034019, (2016), Xu-Chang Zheng, Chao-Hsi Chang et al.

Cross section:

 $\sigma_{|(cc)_{\overline{3}}, {}^{3}S_{1}\rangle} = 0.52 \text{ pb},$ $\sigma_{|(bc)_{\overline{3}}, {}^{1}S_{0}\rangle} = 0.58 \text{ pb},$ $\sigma_{|(bc)_{\overline{3}}, {}^{3}S_{1}\rangle} = 0.79 \text{ pb},$ $\sigma_{|(bb)_{\overline{3}}, {}^{3}S_{1}\rangle} = 0.05 \text{ pb}.$

Differential angle distribution

- NLO calculations for Bc and Bc*
- To see the changes of the physical observables from the LO calculations to the NLO calculations.
- > To see how the dependence on the renormalization scale

changes after including the NLO QCD corrections.

Calculation method

Virtual corrections

Passarino-Veltman tensor reduction,

Integration-by-parts(IBP) reduction

Real corrections

The two-cutoff phase-space slicing method

Difficulties in the calculations:

- Two mass scales (mb,mc)
- Vecotor and axial-vector couplings

Numerical results

Sci. China-Phys.Mech. Astron. 61, 031012,(2018), Xu-Chang Zheng, Chao-Hsi Chang et al.

μ	$\alpha_s(\mu)$	$\sigma_{\rm LO}({\rm pb})$	$\sigma_{\rm NLO}({\rm pb})$	$\sigma_{\rm NLO}/\sigma_{\rm LO}$
$2m_b$	0.180	1.58	2.38	1.51
$m_z/2$	0.132	0.85	1.58	1.86

Cross section of Bc

μ	$\sigma_{\rm LO}({\rm pb})$	$\sigma_{\rm NLO}({\rm pb})$	$\sigma_{\rm NLO}/\sigma_{\rm LO}$
$2m_b$	2.20	2.93	1.33
$m_z/2$	1.18	2.06	1.74

Cross section of Bc*

The NLO corrections are significant!

The dependence on μ is weaken significantly due to NLO corrections.

Production of doubly heavy-flavored hadrons

Sci. China-Phys.Mech. Astron. 61, 031012,(2018), Xu-Chang Zheng, Chao-Hsi Chang et al.

The K-factor changes very little with different θ ;

The NLO corrections change the energy distribution significantly.

2018/10/27

- 3、NLO fragmentation functions for Bc(Bc*) production
 Fragmentation function approach
 - $> \mathsf{NRQCD factorization}$ $d\sigma(e^+ + e^- \to Bc + b + \overline{c})$ $= \sum_n d\sigma(e^+ + e^- \to (c\overline{b})[n] + b + \overline{c}) \langle O^{\mathrm{B}c}(n) \rangle$ Energy scales: \sqrt{s}, m_Q

Log-terms appear in short-distance coefficients:

 $\alpha_{s}^{m}\sum_{n=0}^{\infty}\alpha_{s}^{n}\ln^{n}(s/m_{Q}^{2})$ Collinear gluon emission

Broke or weak the convergence of the series

 $\ln(p_t^2/m_Q^2)$ appearing in the production at a hadron collider

Xu-Chang Zheng(CQU)

Perturbative QCD factorization
$$d\sigma(e^{+} + e^{-} \rightarrow Bc(p) + b + \overline{c})$$

$$= \sum_{i} d\hat{\sigma}(e^{+} + e^{-} \rightarrow i + X)(p / z, \mu_{F}) \otimes D_{i \rightarrow Bc}(z, \mu_{F}) + O(m_{Q}^{2} / s)$$
NRQCD factorization:
$$D_{i \rightarrow Bc}(z, \mu_{F0}) = \sum_{n} d_{i \rightarrow c\overline{b}[n]}(z, \mu_{F0}) \langle O^{Bc}(n) \rangle$$

$$\mu_{F0} = O(m_{Q})$$
Involving $\ln(\mu_{F0}^{2}/m_{Q}^{2})$
Evolution of fragmentation functions
$$\frac{d}{d \ln \mu_{F}^{2}} D_{i \rightarrow Bc}(z, \mu_{F}) = \sum_{j} P_{ij}(z / y, \alpha_{s}(\mu_{F})) \otimes D_{i \rightarrow Bc}(y, \mu_{F})$$

$$P_{ij}(z, \alpha_{s}(\mu_{F})) = P_{ij}^{(0)}(z) \frac{\alpha_{s}(\mu_{F})}{2\pi} + P_{ij}^{(1)}(z) \left(\frac{\alpha_{s}(\mu_{F})}{2\pi}\right)^{2} + O(\alpha_{s}^{3})$$
Collinear log-terms have been resumed through DGLAP evolution.

Xu-Chang Zheng(CQU)

Production of doubly heavy-flavored hadrons 2018/10/27

LO fragmentation function

Extracting from the LO calculation of process $Z^0 \rightarrow Bc + b + \overline{c}$

C-H. Chang, Y-Q. Chen, Phys. Rev. D 46, 3845, (1992);

Calculating from the definition:

J-P. Ma, Phys. Lett. B332, 398, (1994);

There are no NLO results for $D_{i \rightarrow Bc}(z, \mu_F)$

In order to obtain the theoretical predictions under

fragmentation approach up to NLO QCD accuracy, the

NLO results for $D_{i \rightarrow Bc}(z, \mu_F)$ are needed.

Fragmentation function calculation

Based on the definition of FFs by Collins and Soper.

Nucl. Phys. B 194, 445, (1982).

LO cut diagram

$$\begin{split} &D_{b \to B_c}^{\rm LO}(z) \\ &= \frac{2\alpha_s^2 z (1-z)^2 |R_s(0)|^2}{81\pi r_c^2 (1-r_b z)^6 M^3} [6-18(1-2r_c)z+(21-74r_c+68r_c^2)z^2 \\ &-2r_b(6-19r_c+18r_c^2)z^3+3r_b^2 (1-2r_c+2r_c^2)z^4], \end{split}$$

$$D_{b \to B_{c}^{*}}^{\text{LO}}(z) = \frac{2\alpha_{s}^{2}z(1-z)^{2}|R_{s}(0)|^{2}}{27\pi r_{c}^{2}(1-r_{b}z)^{6}M^{3}}[2-2(3-2r_{c})z+3(3-2r_{c}+4r_{c}^{2})z^{2} -2r_{b}(4-r_{c}+2r_{c}^{2})z^{3}+r_{b}^{2}(3-2r_{c}+2r_{c}^{2})z^{4}].$$

NLO corrections

Typical cut diagrams

54 virtual cut diagrams, 72 real cut diagrams.

Virtual correction

Tensor reduction, IBP reduction

Many integrals containing an eikonal line

$$\int \frac{d^{D}l}{[(l-p_{1})^{2}-m_{1}^{2}+i\varepsilon][(l-p_{2})^{2}-m_{2}^{2}+i\varepsilon][(l-p_{3})^{2}-m_{3}^{2}+i\varepsilon](l\cdot n+i\varepsilon)}$$

Real correction

UV and IR divergence!

$$D_{\overline{b} \to Bc}^{real}(z) = \int N_{CS} d\phi_{real} (A_{real} - A_S) + \int N_{CS} d\phi_{real} A_S$$

Calculated in
4-dimension
Calculated in
d-dimension

Various types of subtraction terms need to be integrated.

Xu-Chang Zheng(CQU)

NLO results

Initial fragmentation functions

NLO results

Initial fragmentation functions

NLO results

The fragmentation functions at scale of m_Z

Bc and Bc* production at a Z-factory

- LPO: fragmentation approach, no DGLAP evolution
- LP: fragmentation approach, evolved with DGLAP equation

Conclusions

The production of various doubly heavy hadrons at e⁺e⁻

colliders is studied;

There are many interesting properties in the production, such as the angle distribution is forward-backward asymmetric;

The NLO corrections to the processes $e^+ + e^- \rightarrow Bc (Bc^*) + b + \overline{c}$ and the FFs for a heavy quark fragmentation into Bc(Bc*) are

significant.

Outlook

To study the production of the Bc meson at the LHC up to NLO QCD accuracy;

To calculate the fragmentation functions for the production of

other doubly heavy hadrons up to NLO QCD accuracy.

Thank you !