

Search for Muon to electron conversion at J-PARC 在J-PARC寻找缪子到电子的转换

邢天宇, IHEP On behalf of the COMET collaboration

▶ 物理背景

➤COMET实验设计及现状

≻COMET中方合作组贡献

带电轻子味破坏(cLFV)

- 实验上,已存在味破坏现象
 - 夸克: CKM矩阵
 - 中微子: PMNS矩阵
 - 轻子的味并非严格守恒量!
- 新的味破坏机制可能存在
 - $FCNC \rightarrow cLFV$
 - 其他的味破坏机制?
- 标准模型中的cLFV

- 轻子的FCNC被GIM机制以及中微子质量与W质量比值压低

$$\begin{split} \gamma \\ W \\ \mu \\ \nu_{\mu} \\ \nu_{\nu} \\ \nu_{\nu} \\ \nu_{\nu} \\ \nu_{e} \\ \psi_{e} \\ \psi_{e}$$

 $\mu - e$ 转换

nuclear muon capture

$$\mu^- + (A,Z) \xrightarrow{} \nu_\mu + (A,Z-1)$$

寻找无中微子的缪子核俘获: $\mu - e$ 转换

$$\mu^- + (A,Z) \rightarrow e^- + (A,Z)$$

带电轻子味破坏 (cLFV)过程

- 信号特征:
 - 105 MeV的单能电子
- 本底特征:
 - 无束流相关偶发本底 不受束流亮度制约
 - 束流本底主导
 - 可用脉冲束流抑制
 - 物理本底有限
 现有探测器技术足以应对

机遇:

新一代

质子源

历史上的缪子cLFV实验

COherent Muon Electron Transition (COMET) at J-PARC

目前最好的 $\mu N \rightarrow eN$ 限制: 7×10⁻¹³ (90% C.L.) SINDRUM II experiment at PSI

COMET目标: **提升10000倍**!

COMET实验概况

·预期灵敏度: 2.6 × 10⁻¹⁷
·打靶质子: 8.5×10²⁰/年
·停留缪子: 2.0×10¹⁸/年
要求缪子束流:

 10^{11} muon/sec! (10^8 @PSI)

- 实验难点: - 产生并俘获大量缪子 厚靶,超导俘获磁体 - 挑选干净的低能缪子 长输运线,弯曲螺线管
 - 从大量束流粒子中挑选信号 C形电子输运线

提高缪子流强, 控制本底!

本底来源与控制方法

- 来源
 - 缪子束流中存在能量大于 100MeV的粒子
- 控制方法
 - 使用脉冲束流

- 绝大多数在脉冲前沿,可用 延迟时间窗控制:700ns延迟 - 少数散落分布,由质子泄露 造成,故要求质子泄漏率低于 10⁻¹⁰。

本底来源与控制方法

- 2. 物理本底
- 来源
 - 主要来源于在轨缪子衰变(DIO)
 - 已有带辐射修正的精确计算 (Czarnecki),信号附近的DIO尾巴以5次 函数形式降低
- 控制方法
 - 通过精确的径迹重建防止信号区出现 物理本底。
 - 动量分辨要求在400 keV/c以内。

3. 宇宙线、误重建

- 控制方法
 - 用宇宙线屏蔽系统做反触发
 - 严格控制重建质量

产生靶和超导俘获磁体

- 为提高缪子产生效率:
 - 倾向高能质子: 2~8 GeV
 - 厚靶: 1~2个强相互作用长度
 - 高温: 钨或碳
 - 高强度俘获磁场: 5特斯拉
 - 超导磁体:大半径线圈大体积屏 蔽以抵抗辐射热量
 - 绝热衰减:提高接收率

- 为提高缪子束纯净度:
 - C型弯曲螺线管用于筛选粒子
 - 带电粒子会垂直于弯曲平面平移。
 平移距离正比于粒子动量。
 平移方向取决于粒子电荷。
 - 垂直方向的补偿磁场可以将希望保 留的 (~40 MeV μ⁻)粒子拉回弯曲平 面。
 - 末端的准直器可以截止无关的束流 粒子。

静止靶和探测器系统

- 低能缪子停留在静止靶内。
 - 由一系列铝或钛的薄片组成,控制避免能损。
- 束流通过另一端C型螺线管进行筛选
 - 降低探测器噪声。
- 高分辨率高接收度的探测器系统位于 C型螺线管的另一端。

COMET分阶段计划

8GeV, 7mA, 56 kW

COMET 二期,一年取数时间

达到最终预期单事例精度2.6×10⁻¹⁷ (10,000倍提升)

做准备 利用专用圆筒探测器(CyDet) 直接寻找µ-e转换,单事例

精度3×10⁻¹⁵(100倍提升)

8GeV, 0.4mA, 3.2 kW

圆筒探测器(CyDet)

- 为一期实验专门设计。由漂移室和圆筒触发探测器组成
- 圆筒触发探测器:
 - 分塑料闪烁体和切伦科夫探测器两层。提供触发TO和粒子鉴别。
- 漂移室:
 - 全斜丝: 为短径迹保留径向位置信息。
 - 氦基混合气体:降低散射效果,保障动量分辨。
 - 大内径: 避免过高的DIO击中率。

COMET合作组

~200个成员, 41个研究机构,17个国家

中方合作组: 高能物理所, 南京大学, 北京大学, 中山大学

- 2015年完成了128块前端电路板的生产
 - 设计基于 BELLE-II漂移室的前端电子学
 - 48通道
 - 1 nsec时间分辨
 - ADC采样率30 MHz,~5微秒环形缓存。
- 2016年完成对所有电路板的抗老化测试及 各项指标新能测试

- 原型机的设计和测试
 - 参与早期设计,负责数据分析。
- 漂移室的搭建
 - 参与漂移室的搭建与问题排查。
- 宇宙线测试与校准
 - 参与取数调试,负责数据分析,开发校准框架。
- 重建算法的开发
 - 独立领导漂移室重建工作,重点负责多圈径迹 分辨。展开传统拟合与神经网络两个方向的工
 Wire position @end plate
 Momentum Percelution

- 参与软件框架的开发
 - 针对COMET实验重构框架,完善探测器模拟
- 基于蒙卡模拟优化实验设计
 - 利用高能所计算资源对COMET一期设计进行优化:
 产生靶,输运束流,螺线管磁场,准直器,静止
 靶以及探测器屏蔽。
 - 研究各项本底,评估一期的物理精度(TDR2018)
- 利用高性能计算平台提供更细致的蒙卡研究
 - 正在开发基于天河2号的并行计算,为大批量束流 模拟,宇宙线模拟及重建工作做准备。

19

展望下一代cLFV实验

- CLFV在陶子区域:
 - 期待在Belle II 和 LHCb 有1~2数量级的提高
- CLFV在缪子区域:
 - 缪子衰变, 直流束流, 受制于探测器
 - •μ → eγ : 1个量级
 •μ → eee: 3~4个量级
 - 缪子电子转换,脉冲束流, 受制于亮度前沿
 - •µ N→eN: 4~6个量级
- T 亮度:
 - 当前2/sec
 - 未来100/sec
- µ 亮度:
 - 当前10⁸/sec

• 未来10¹¹/sec~ 10¹²/sec

Reaction	Current Limit	Future Limit	Location
$\tau \to \mu \gamma$	4.4×10^{-8}	< 10 ⁻⁹	Flavor factory
$\tau ightarrow e\gamma$	3.3×10^{-8}	< 10 ⁻⁹	Flavor factory
$\tau \to \mu \mu \mu$	2.1×10^{-8}	$< 10^{-9} \sim 10^{-10}$	Flavor factory
$\tau \rightarrow eee$	2.7×10^{-8}	$< 10^{-9} \sim 10^{-10}$	Flavor factory
$\tau \rightarrow \mu e e$	1.5×10^{-8}	$< 10^{-9} \sim 10^{-10}$	Flavor factory
$\mu ightarrow e \gamma$	4.3×10^{-13}	4×10^{-14}	MEG II
$\mu \rightarrow eee$	1×10^{-12}	$10^{-15} \sim 10^{-16}$	mu3e/MuSIC
$\mu N \rightarrow e N (Au)$	7×10^{-13}	< 10 ⁻¹⁸	PRISM/Mu2e II
$\mu N \rightarrow e N (Al)$		$10^{-15}/10^{-17}$	COMET/Mu2e
$\mu N \rightarrow e N (Ti)$	4.3×10^{-12}	< 10 ⁻¹⁸	PRISM/Mu2e II
$\mu^- N \rightarrow e^+ N (Al)$	4.3×10^{-12}	?	COMET

µ-e终极计划: PRISM/PRIME

- 采用FFAG技术(Fixed Field Alternating gradient)

总结

- cLFV是极其干净的新物理探针,其所需要的FCNC过程广泛存在于新物理模型之中。
- μ e转换受益于简单的信号特征,可以利用高亮度脉冲 质子源显著提升探测精度(4~6个数量级),并对photonic 过程和four-fermi过程同时寻找。
- J-PARC的COMET实验单事例精度为S.E.S = 2.6 × 10⁻¹⁷ (4 个数量级提升) 计划从2022年取数,为期一年。
 - COMET一期将先行启动,以3×10⁻¹⁵精度(2个数量级提升)搜
 寻μ-e转换,并对束流进行直接测量。
 - 一期项目的质子束流及探测器部分将于2019年完工,等待取数。
 - 中方合作组参与了电子学,探测器和软件方面的工作并作出了重要贡献。
- 下一代cLFV实验(PRISM)的设计还在讨论中。

Back up

 $\mu - e$ 转换的模型依赖

Photonic 过程

Four-Fermi 过程

产生靶的选择

- 耐高温,稳定,高强度
 - -碳靶(3.2kW),无需制冷
 - 钨靶(56kW), 需要冷却系统
 - 流动靶? (~MW)
- 尽可能高密度
 - -击中产生击中收集,提高收集效率

静止靶的选择

Selection of the Target Material

- $\cdot~$ DIO E_{endpoing} extends to the E_{\mu\text{-e}}
 - · Recoil energy
 - · Muon binding energy
- Select the target material with high $E_{\mu-e}$ and avoid using the material with larger $E_{endpoint}$ around the target
 - When the target is made of aluminium, we should avoid using materials from Z=5 to Z=12.
 - $\cdot\,$ He (Z=2) is OK to use around the target
- Lifetime of muon in muonic atoms
 - Shorter in larger Z because of the larger nuclear muon capture rate

	Al	Ti
lifetime	864 ns	330 ns
time window	0.3	0.2
signal	1	1.5
net	0.3	0.3

J-PARC质子束流

- J-PARC质子束流通过RCS整 形和MR加速后,单脉冲宽 度在100ns。通过空一个位置 注入的方法可实现1.17us的 脉冲间隔。
- MR的运行周期是2.48秒,实 际可利用时间0.8秒,占空比 DF=0.32。
- J-PARC目前最高功率500kW。
 不同于T2K的快速提取(FX),
 COMET采用慢提取方案
 (SX),56kW

J-PARC质子束流

• 为保证质子泄露率低于10⁻¹⁰, J-PARC在MR采用特殊的注入机制

- 注入动作提前半个相位进行以避免空位处残留质子

• 2018年初的束流测试结果证明了这个方案的成功: 泄漏率<6×10⁻¹¹

束流能量的选取

10

1

 10^{2}

Proton Momentum (GeV/c)

10

K4 远端泄露

2018年年初J-PARC的束流测试发现了K4的远端泄露现象

- 若能遮蔽K4,质子泄露率可控制在10⁻¹⁰
- 若能解决这个问题,质子泄漏率可达6×10⁻¹¹

FFAG技术

COMET一期预期性能

- COMET一期设计已完成优化,并依据软件框架对预期性能进行了评估。 TDR(2018)即将发表。
 - 灵敏度:
 - 信号接受度评估为0.041, 如右上。
 - 150天时间可以达到3×10⁻¹⁵单事 例精度
 - 本底:在99.99%宇宙线屏蔽效率下, 总共本底事例预期为0.032,具体 分析如右下所示。
 - 触发率:
 - 由束流带来的触发率预计为 ~10kHz(经过漂移室触发判选之 后,触发事例展示如下图)

Event selection	Value
Online event selection efficiency	0.9
DAQ efficiency	0.9
Track finding efficiency	0.99
Geometrical acceptance + Track quality cuts	
Momentum window ($\varepsilon_{\rm mom}$)	
Timing window ($\varepsilon_{\text{time}}$)	0.3
Total	0.041

Type	Background	Estimated events
Physics	Muon decay in orbit	0.01
	Radiative muon capture	0.0019
	Neutron emission after muon capture	< 0.001
	Charged particle emission after muon capture	< 0.001
Prompt Beam	* Beam electrons	
	* Muon decay in flight	
	* Pion decay in flight	
	* Other beam particles	
	All (*) Combined	≤ 0.0038
	Radiative pion capture	0.0028
	Neutrons	$\sim 10^{-9}$
Delayed Beam	Beam electrons	~ 0
	Muon decay in flight	~ 0
	Pion decay in flight	~ 0
	Radiative pion capture	~ 0
	Anti-proton induced backgrounds	0.0012
Others	$Cosmic rays^{\dagger}$	< 0.01
Total		0.032

† This estimate is currently limited by computing resources.

COMET物理结果探讨

- 如果发现信号:
 - 新物理的直接证据
 - 扫描静止靶材料,研究新物理 性质
- 如果未发现信号:
 - 依然可以给新物理模型以广泛 而强力的制约
 - 更高精度的实验!
- *μ*-*e*转换以外:
 - 精确测量μ,π的核俘获能谱及μ
 的在轨衰变(DIO)能谱
 - 加深对Q~100MeV时核结构的 理解
 - 其他的CLFV过程:
 - $\mu^- N_z \rightarrow e^+ N_{Z-1}$, $\mu^- e^- \rightarrow e^- e^-$, $\mu^- \rightarrow e^- X$.
 - 已展开理论研究和实验方法 的讨论

cLFV作为干净的新物理探针

- 标准模型中的cLFV
 - 轻子的FCNC被GIM机制以及中微子质量与W质量比值压低

$$\begin{split} \mathcal{B}(\mu \to e\gamma) &= \frac{3\alpha}{32\pi} \left| \sum_{i=2,3} U_{\mu i}^* U_{ei} \frac{\Delta m_{i1}^2}{M_W^2} \right|^2 \sim 10^{-54} \\ &* \not\equiv \not\chi : Br = \Gamma_{CLFV} / \Gamma_{capture} \end{split}$$

不受标准模型本底干扰 非零信号=新物理!

- 新物理模型中的cLFV
 - 在新的扩展区域,没有理由认为味混合为零。
 - 以SUSY为例:

$$Br(\mu \to e_{\gamma}) = 10^{-11} \times \left(\frac{2TeV}{\Lambda}\right)^4 \left(\frac{\theta_{\mu e}}{10^{-2}}\right)^2$$
理论预言可被当前实验手段检验!

稻草管量能器系统(StrEcal)

- 稻草管探测器
 - 完成20微米厚稻草管的搭建, 并成功完成真空测试。
 - •利用100MeV电子束测试空间 分辨为150微米,满足实验要 求
- 电磁量能器
 - 测试了GSO与LYSO两种晶体, 分别得到5.7%和4.6%的能量 分辨。选取LYSO。
- 前端读出电子学
 - 基于DRS4的GHz采样电子学 (ROESTI/EROS)已完成开 发。
 - 抗辐照测试进行中。

