

中国科学院高能物理研究所

Institute of High Energy Physics Chinese Academy of Sciences

Observation of H->bb

Zhijun Liang (梁志均)

Institute of High Energy Physics , Chinese Academy of Science

2018重味物理和CP破坏研讨会

Outline

- Overview of the history of H→bb search
- Search for SM H→bb (Dominant Decay Channel)
 - VBF H→bb analysis
 - VH(→bb)
- BSM search with H->bb final state

Search for H->bb decay

- Motivation H→bb is the Dominant Decay mode
- Difficulty : background from g->bb is much larger

History of H->bb

- Started in LEP era, developed in Tevatron, then LHC.
- Last for more than 20 years
- Still Not found in LHC Run 1 analysis

ATLAS Detector upgrade: run 1 to run 2

IBL = New Insertable pixel B-Layer at R=33 mm

B tagging performance Improvement

• Light jet rejection increases by a factor of 10 in run2

H->bb search: 4 channels

- Gluon-gluon fusion(ggF):
 - Largest production, huge background, difficult to trigger
- Vector boson fusion (VBF): Forward jet signature
- W/Z Associated production (VH):
 - Lepton trigger, missing energy signature
- Ttbar associated production (ttH):
 - lepton, multi-jets signature
 - $H \rightarrow bb$ is hadronic final state

 \rightarrow need a clear signature for trigger at hadron collider

VBF H(bb) analysis

- IHEP team propose Search for H->bb in VBF events containing a central photon
- Advantages of requiring a photon
 - extra handle for trigger
 - suppresses QCD background
 - Sensitive to WWH VBF production
 - not sensitive to ZZH VBF

VBF H(bb) $+\gamma$

Event display for VBF H(bb)

MVA Input variable: photon centrality

Use 11 variable used in BDT analysis

$$centrality(\gamma) = \left| \frac{y_{\gamma} - \frac{y_{j_1} + y_{j_2}}{2}}{y_{j_1} - y_{j_2}} \right|$$

No color connection between VBF jets and b jets in signal

VBF H(bb) background fit

- Simultaneous m(bb) Fit to all 9 regions
 - Signal shape is modelled by crystal ball function
 - Background shape is modelling by polynomial function

VBF H(bb) result and major issue

- ~2σ significance using VBF H(bb)
 - Statistics uncertainty dominated
- Inclusive VBF H(bb) is limited by
 - Jet Trigger p_T threshold too high
 - Need very high p_T(bb) cut to reduce trigger bias
 - Z+jets modelling unc. in high p_T(bb) is large

Phys. Rev. D 98 (2018) 052003

H->bb search: 4 channels

- Gluon-gluon fusion(ggF):
 - Largest production, huge background, difficult to trigger
- Vector boson fusion (VBF): Forward jet signature
- W/Z Associated production (VH):
 - Lepton trigger, missing energy signature
- Ttbar associated production (ttH):
 - lepton, multi-jets signature
 - $H \rightarrow bb$ is hadronic final state

 \rightarrow need a clear signature for trigger at hadron collider

VH(bb) analysis

VH(bb) result

Fit result with 79.8 fb⁻¹ of Run-2 data

 $\mu=\sigma_{
m meas}/\sigma_{
m SM}=1.16^{+0.27}_{-0.25}$ Significance: **4.9** σ (4.3 σ expected)

Combination with Run-I:

$$\label{eq:multiplicative} \begin{split} \mu &= 0.98 \pm 0.14 ({\rm stat.})^{+0.17}_{-0.16} ({\rm syst.}) \\ \text{Significance:} \textbf{4.9} \pmb{\sigma} ~ \textbf{(5.1} \sigma ~ \textbf{expected}) \end{split}$$

With VH(bb) from 2016/17 at 13 TeV, 77.2 fb⁻¹

- Significance: 4.4 σ obs (4.2 exp)
 With VH(bb) including also 7 and 8 TeV
- Significance: 4.8 σ obs (4.9 exp)

VH(bb) major systematics

- Systematics is comparable to statistics uncertainty
- Major systematics :

ATLAS-CONF-2018-036

- W+jet p_T(W) modelling
- m_{bb} shape in Z+jets

16

VH(bb) major issue

• Large QCD scale uncertainty in W+bjets BG modelling

$H \rightarrow bb$ observation in ICHEP2018

- ATLAS presented $H \rightarrow bb$ observation in ICHEP2018 (5.4 σ)
- China Science Daily reported this news in its front page
 - NJU,USTC,SDU and SJTC made key contribution to VH(bb) analysis
 - IHEP made key contribution to VBF H(bb) analysis

我国每万人口拥有10.6件发明专利

A # # # 7 R 40 D # 2 # # # 14 P. 2 #如此产机用每行 xx1 中#三季度共行使成 xed. 国家などの市営業権となるのでものなった 148.歳」をかかす。大変、発展室の支持中方 業人に使たいた、使い室や、古生界の次が 化物料的分布 从今夜未得能令,望六家田中利 NTERTERATION OF THE BRIDE RUA ATTAK SPEEK VORADER 1个物质与国内学生系统。128篇上第1篇内状 HT+HT#1004(104)20-CARBOLNES, ST. BREETS 上台人说着,"每四个母,在的客客等来的平时 0.国内橡树 以中以上的常臣来颁中利臣上述

34个编辑中,34个技术编辑武器量少于留片 用利益比学,电抗电气展置,参量技术,医学技 A.比喻、计算机技术等+个物理、算机外差的 112、日本、井田市山へは1000112か日本 の、三部市市10月1日本市内、市部第三里市内 市均和市市市は二年4月1日市。 ゴダビントをあたらなるなおであため.

2014年上ヤヤ、米国上学校以下の内容を知知り 第4、副院院町支援委4、教授 3018 年1 月前、株 第三人(不会希望会)安田中村(秋夏夏天)というふ 28.47.408974078228 448.3 \$107-024.520740144.8×1744 BELLINS, MELBER, M. RO.LA THE

ATLAS 首次发现希格斯粒子最主要衰变过程 中国科学家作出关键贡献

「「日本日本」、日本田子小心大型田子村田氏之町 AL OTHER AND 7 BOOM FOR BUT PARTY

新聞学家认为, 希利斯提出了教学品系统下位 1.4 代以東東北不開始中、送生工業中報新設合 于根他为"上帝能于"的第三,之前称乎来自己地说 2 · 每个时期记载,这些世纪电景美的演变量

▲確認/安全教養書/F/月+日,在 pp+温除者 考望学生/, 在实际点带结影说色示教安小的不知 No. #6825.1828 10460 #6825.18 我说一时里春天, 也是希望的过去了最后里出生的 REUM. NOME-REUMANNEMEN →以充的一大空台、所用是一步立式家族与先常量 的考虑都来来。

由于由于时间代上的了全体中产的高度为40 1000 THUL FURRER-REARING, R. RATIAS 実施県会了多个考核影談為手产生に報約 公开场景,其小型的数子数合记程,其重建色子数合记 稿, ¥12 望色子时间着"生红袍,没有无时间着"生红

我国最大盐湖资源环境信息数据库建成

含有我国近千个盐湖基本数据

株式市会会から、ATLALを取り用意けて必要会であ TOPUNE BOO HERBERGTERTE ANTIANACORCERC.

COLORS SERVICE OF ATLAN NAISBERTENED TARES. ROOMS 与数于融合过程的正规服务充匀更变合的。被 AT-LAI会行地位会大学公式的大学人、世外成大学名 41.4.2度、同使、要求生活保分析的信号和发展计 留景和合与留寺橋莽尊万家作出主寺武尉,并在 ATLAS会包括小包了董事物等。

824.01.01.01.

1.米弗基万姓希,为10米企业指动科技创新包裹电的时候,发 把小块立业位置成果不需 佛理,在第人才已确试在。

会上,有方面通过实施,小面和品质的现在中央企业和规划 新闻新会行协议)、新国政化,建筑市场化学和自由的合作并通知者 建设,引导小共企业科技包裹,包括国际产学会作,指表"一考一 時"農业、優化引引業引業引、使大产业包裹人才补热。加强中央 会会和的规模理论,现象产生是会发展就能,成人力是会会和意 工作,使者企业和技工化量保。

(C1534)

TANING DERKENDED

て彫刻の局体ななない

研究所の対しを意志的小国品を含めたいの優かを表 但考工式者(DBR、新工艺共工艺和教育中的组织 中国人民的市场和市场的市场工作系统工作用点。

施行机-1世纪和资格和时间和学家指带非无力· TTETR. LEARNIERNE. LANABA PERMITENTERADOR, CONSISTENT

中市实业建筑多关系的建筑和成长年的关键之1000个量。 80 84 2 8 8 10 101-00 PT 8 80 MR 8 19 10 *** 280 FZ-42288888888888 TTATE LOUIS LOUIS LOUISING LO **会小儿中教知道, 王明会小师儿中教祖教, 王明高兴会** SATERDAR DOWNLOW ADAR LOS STREET, BRITTER

计数据本事并合约建成 为在我的中国国的本事 BRIARTS, TABBOC HERITARS EDGROADLT. TREASURGED AND WARDON BACKIN, STEATING! QURATER, AUGHTQ233, AUGHTA S. - MEXESAN METER LA" SRIDE READERANCE METERS . REATERSON ■ ■日本内の市内は単語目の市内目

H->bb Combination

ATLAS Hbb (Run1+Run2): 5.4 σ (5.5 σ exp.)

CMS Hbb (Run1+Run2): 5.6 σ (5.5 σ exp.)

CMS confirmed H \rightarrow bb observation in Vitnam2018 (5.6 σ)

H->bb measurement in the future

- Current LHC precision is about 20%
- HL-LHC can measure H->bb to 10% level.
 - H->cc and H->gg are not likely be observed in LHC
- CEPC can improve H->bb measurement by two order of magnitude.
 - 0.3% level for H->bb, 3% for H->cc, 1% for H->gg.

General issue in TeV scale

- Two b jets from boosted Higgs decay merge into one
- Difficult to reconstruct Higgs boson in jet final state
- Two new analysis technique used in this analysis
 - B tagging on track jets
 - Jet substructure

B tagging on track jet

Prospect of future X->H+γ search

Development in advanced double b jet tagger

Prospect of future X->H+γ search

Expect significant improvement in full run-2 dataset In double b tagging efficiency

Summary

- First observation of H->bb decay mode by ATLAS and CMS
 - Chinese group made key contribution
- Some major theory systematics need more study in next steps
 - Modelling of W+b jets, Z+jets in high pT region
 - tt+bb backgroud
- Boosted Higgs reconstruction technique in BSM search

ttH(bb)

Phys. Rev. D 97 (2018) 072016

-Single Lepton Channel ---

- 1 light lepton (e,µ)
- At least 4 jets
- At least 2 b-tagged jets

- Dilepton Channel

- 2 opposite charge light leptons (e,µ)
- At least 3 jets
- At least 2 b-tagged jets
- Z mass veto

ttH(bb)

Signal Region (SR) : Enriched in signal. **Control Region (CR)** : Use to constraint backgrounds. $tt + \ge 1$ bjet, $tt + \ge 1$ cjet, and tt +light jets are the dominant backgrounds

ttH(bb)

- 1.4σ significance using ttH(bb)
 - Systematics uncertainty dominated
- Major systematics:
 - ttbar+bb background modelling systematics
 - The discrepancy between Sherpa 4 flavor scheme and Powheg

Introduction search for X-> H(bb)γ

- Motivation
 - According to Liantao yesterday, V+H search is very promising
 - Search for anomalous magnetic moments of H (or W/Z)
 - Several models predict a new massive scalar decaying into $H\gamma$

29

- Event selection :
 - boosted jet (b tagging) -- from H, W or Z decay
 - high pT γ (pT>250GeV)

Jet Substruture

- Inclusive search for and measurement of H→bb in boosted regime.
- Searches for heavy (>1 TeV) resonances decaying to SM-bosons, or top-quarks.
- Precision measurements of SM in extreme phase-spaces.

Jet mass

B tagging on track jet

B tagging based on track jet

Limit setting of X-> H γ search

- Use analytic function to fit fast falling background from
 - γ jets, Z γ , SM VBF H γ
- The first X-> Hγ limits (from 1TeV to 3TeV)
- IHEP/TDLI played a leading role in this analysis

arXiv:1805.01908

X-> H γ search

- Hy mass spectrum can also be used for Higgs coupling study
 - strongly interacting light Higgs (SILH) model as an example

X-> VH search

No new physics yet

Prospect of future X->H+γ search

Development in advanced double b jet tagger

Prospect of future X->H+ γ search

Expect significant improvement in full run-2 dataset In double b tagging efficiency

Summary

- First observation of H->bb decay mode by ATLAS and CMS
 - Chinese group made key contribution
- Some major theory systematics need more study in next steps
 - Modelling of W+b jets, Z+jets in high pT region
 - tt+bb backgroud
- Boosted Higgs reconstruction technique in BSM search

Trigger

- divided into 3 channels based on triggers:
 - VBF inclusive
 - Two central : 4 central jets with 2 bjet(2b+2j)
 - Four central: 2 central + 1 forward trigger jet (1fj+2b)
 - VBF+photon
 - Photon: photon + 2bjet+2 forward jets (γ+2b+2fj)

Event Selection

Two to Chan	VBF z Central nel (1fj+2b)	VBF b VBF our central hannel (2b+2j)	q' W W H W H b b b b b b b b b b
	Two central	Four central	Photon
2 b-jet	p _, >95GeV p _, >70GeV	p _, >55GeV	p ₇ >40GeV
2 VBF jets	p _, >60GeV, 3.2< η <4.4 p _, >20GeV, η <4.4	p_>55 GeV, η <4.4 Veto event with jet p_ >60GeV, 3.2< η <4.4	p _, >40GeV η < 4.4
Photon			E _, >30GeV
Event topology	p _, (bb)>160GeV	p _, (bb)>150GeV	p _. (bb)>80GeV M(jj) >800GeV

Inclusive analysis veto data events in photon channel orthogonality between different channels

Boost decision tree analysis

MVA Input variable: photon centrality

No color connection between VBF jets and b jets in signal

BDT response

- Divide into 9 categories based on BDT weight
 - Expected Higgs and Z events in 100GeV<m(bb)<140GeV

Two central

Four central

Photon channel

Channel	two-central		four-central				photon		
Region	SR I	SR II	SR I	SR II	SR III	SR IV	SR I	SR II	SR III
Higgs									
VBF	101.2 ± 2.0	22.2±0.9	51.6±1.1	28.4±0.9	43.1±1.0	41.9±1.1	6.2±0.1	5.5 ± 0.1	2.3 ± 0.1
ggF	23.8±2.6	75.7±6.1	11.3 ± 2.2	13.2 ± 1.5	43.4 ± 3.8	127.0 ± 6.5	0.5±0.2	0.3±0.1	0.8±0.3
VH	0.2±0.2	6.0±1.2	1.2±0.9	0.7±0.3	3.9 ± 0.8	28.9 ± 2.6	<0.1	<0.1	<0.1
ttH	2.0±0.2	14.6±0.7	0.3±0.1	1.0 ± 0.1	5.7±0.3	20.2 ± 0.5	<0.1	<0.1	0.4 ± 0.1
Z + jets ($Z\gamma$)	183.1±50.6	515.1±73.4	76.42 ± 14.8	119.4±21.9	385.4 ± 48.5	1224.6±97.9	2.4 ± 0.1	6.9±0.1	13.0 ± 0.1

VH(bb)

- Major systematics :
 - W+jet p_T(W) modelling
 - m_{bb} shape in Z+jets
 - m_{bb} shape in diboson
 - Signal accetance

ATLAS-CONF-2018-036