

Charm Prospects at BESIII

Xiao-Rui Lyu (吕晓睿) 中国科学院大学

(On behalf of the BESIII collaboration)

- Introduction
- Status of BESIII
- Upgrade plan
- Physics prospects
- Summary

EXAMPLE SITE SET UP: SET UP:

Xiao-Rui LYU

€SⅢ Physics at tau-charm Energy Region

- Hadron form factors
- Y(2175) resonance
- Mutltiquark states with s quark, Zs
- MLLA/LPHD and QCD sum rule predictions

- Light hadron spectroscopy
- Gluonic and exotic states
- Process of LFV and CPV
- Rare and forbidden decays
- Physics with τ lepton

- XYZ particles
- D mesons
- f_D and f_{Ds}
- D₀-D₀ mixing
- Charm baryons

BESIII Detector

Layers: 43

Crystals: 28 cm(15 X₀) Barrel: |cosθ|<0.83 Endcap: 0.85 < |cosθ| < 0.93

TOF BTOF: two layers

ETOF: 48 crys. for each

₨₰

HFCPV2018, 郑州

BESIII Detector Performance

Exps.	MDC Spatial resolution	MDC dE/dx resolution	EMC Energy resolution	Exps.	TOF Time
CLEO-c	110 µm	5%	2.2-2.4 %		resolution
BaBar	125 μm	7%	2.67 %	CDFII	100 ps
Belle	130 µm	5.6%	2.2 %	Belle	90 ps
BESIII	115 µm	<5% (Bhabha)	2.4%	BESIII	68 ps (BTOF) 60 ps (ETOF)

MUC: Efficiency ~ 96% backgroun level: < 0.04 Hz/cm²(B-MUC), < 0.1 Hz/cm²(E-MUC)

Data/MC consistency

• For tracking efficiency data/MC difference < 1%

• For photon detection efficiency data/MC difference < 1%

BESIII upgrade

MDC: Malter effect found in inner chamber in 2012, add water vapor to the chamber to cure the aging problem

- New inner chamber, built by IHEP, is ready now
- Cylindrical GEM Inner Tracker (CGEM) as the inner chamber ongoing : Italy group in collaboration with other groups
- **Other possible upgrade plan is under discussion**

Cylindrical GEM Inner Tracker in a nutshell

BESIII is building a cylindrical GEM detector (CGEM-IT) to replace the **BESIII** Inner MDC to recover some efficiency loss due to aging and to improve the secondary vertex resolution.

Expected performance of CGEM

Data/MC discrepancy

$\epsilon_{data}/\epsilon_{MC}$ -1	2010	2016	2019?
Tracking eff./track	~2%	~1%	~0.5%
PID/track	~2%	~1%	~0.5%
Photon eff./photon	~1%	0.5-1%	~0.5%

Control of systematic errors.

BESIII existing data samples

BEPCII upgrade

AH 27

- Increase of beam energy 2.30→2.35→2.45 GeV
 - → 2.35 GeV in 2018 summer (done)
 - → 2.45 GeV in 2020-21, change ISPB (Interaction region SePtum Bending) magnet
- Top-up injection
 - Data taking efficiency increases by 20~30%

Future BESIII data Set

Year budget is not considered

Best Wishes

,			
Energy	physics highlight	Current data	Expected final data
		# of events	# of events
		or integrated luminosity	or integrated luminosity
1.8 - 2.0 GeV	R values	N/A	Scan: 3 energy points
	cross-sections		
2.0 - 3.1 GeV	R values	Scan: 20 energy points	No requirement
	cross-sections		
${ m J}/\psi~{ m peak}$	Light Hadron & Glueball	5.0 billion	^{10.0} billion by 2019
	Charmonium decay		
$\psi(3686)$ peak	Light hadron& Glueball	0.5 billion	3.0 billion
	Charmonium decay		
$\psi(3770)$ peak	D^0/D^{\pm} decays	$2.9 { m ~fb^{-1}}$	$20.0 { m ~fb^{-1}}$
	Form-factor/CKM		
	decay constant		
3.8 - 4.6 GeV	R value	Scan: 105 energy points	No requirement
	XYZ/Open charm		
$4.180 {\rm GeV}$	D_s decay	$3.1 { m ~fb^{-1}}$	$6.0 { m ~fb^{-1}}$
	XYZ/Open charm		
	XYZ/Open charm		Scan: 30.0 fb^{-1}
4.0 - 4.6 GeV	Higher charmonia	Scan: 12.0 fb^{-1}	$10 \text{ MeV step}/0.5 \text{ fb}^{-1}/\text{point}$
	cross-sections		30 energy points
4.60 GeV	$\Lambda_c/{ m XYZ}$	$0.56 { m ~fb^{-1}}$	$1.0 { m ~fb^{-1}}$
4.64 GeV	$\Lambda_c/{ m XYZ}$	N/A	$5.0 { m ~fb^{-1}}$
$4.65~{ m GeV}$	$\Lambda_c/{ m XYZ}$	N/A	$0.2~{ m fb}^{-1}$
$4.70 {\rm GeV}$	$\Lambda_c/{ m XYZ}$	N/A	$0.65 { m ~fb^{-1}}$
$4.80 {\rm GeV}$	$\Lambda_c/{ m XYZ}$	N/A	$1.0 { m ~fb^{-1}}$
$4.90 {\rm GeV}$	$\Lambda_c/{ m XYZ}$	N/A	$1.3 { m ~fb^{-1}}$
$\Sigma_c^+ \bar{\Lambda}_c^-$ 4.74 GeV	Charm Baryons	N/A	$1.0 { m ~fb^{-1}}$
$\Sigma_c \overline{\Sigma}_c$ 4.91 GeV	Charm Baryons	N/A	$1.0 { m ~fb^{-1}}$
$\Xi_c \bar{\Xi}_c \ 4.95 \ { m GeV}$	Charm Baryons	N/A	$1.0 { m ~fb^{-1}}$

Xiao-Rui LYU

Charmonium-like states

State Decay modes Seen by $\pi^{\pm}J/\psi$, $(D^{*}\overline{D})^{\pm}$ BESIII, Z (3900)^{±,0} in $e^+e^- \rightarrow \pi^- Zc$ Belle CLEO Z_c(4020)^{±,0} $\pi^{\pm}h_{c}$, $(D^{*}\overline{D^{*}})^{\pm}$ BESIII in $e^+e^- \rightarrow \pi^- Zc$ Belle. Z_(4430)* π[±]ψ(2S) BaBar, $\pi^{\pm}J/\psi$ in $B \rightarrow KZc$ LHCb

Overpopulated observed new charmonium-like states, i.e. "XYZ".

Y(4260): $e^+e^- \rightarrow \pi^+\pi^- J/\psi$

Xiao-Rui LYU

SAFC Dayong stalk

$\mathbf{H}_{Y(4260)} \rightarrow Y(4220): \text{ what's nature?}$

Xiao-Rui LYU

$$\begin{aligned}
\underbrace{\sigma_{\sqrt{s}=4.23GeV}^{qe+e^-} \to \pi^+\pi^- J/\psi}_{\sigma_{\sqrt{s}=4.23GeV}^{qe}} = (65 \pm 12)\% \\
\frac{\sigma_{\sqrt{s}=4.23GeV}^{e^+e^-} \to \pi^+\pi^- J/\psi}{\sigma_{\sqrt{s}=4.23GeV}^{e^+e^-} \to \pi^+\pi^- J/\psi} = (55 \pm 5)\% \\
\frac{\sigma_{\sqrt{s}=4.23GeV}^{e^+e^-} \to \pi^+\pi^- J/\psi}{\sigma_{\sqrt{s}=4.23GeV}^{e^+e^-} \to \pi^+\pi^- J/\psi} = (25 \pm 3)\% \\
\frac{\sigma_{\sqrt{s}=4.23GeV}^{e^+e^-} \to \pi^+\pi^- J/\psi}{\sigma_{\sqrt{s}=4.23GeV}^{e^+e^-} \to \pi^+\pi^- J/\psi} = (25 \pm 3)\% \\
\frac{\sigma_{\sqrt{s}=4.23GeV}^{e^+e^-} \to \pi^+\pi^- J/\psi}{\sigma_{\sqrt{s}=4.23GeV}^{e^+e^-} \to \pi^+\pi^- J/\psi} = (6.4 \pm 1.1)\% \\
\frac{\sigma_{\sqrt{s}=4.23GeV}^{e^+e^-} \to \pi^+\pi^- J/\psi}{\sigma_{\sqrt{s}=4.23GeV}^{e^+e^-} \to \pi^+\pi^- J/\psi} = (6.4 \pm 1.1)\% \\
\frac{\sigma_{\sqrt{s}=4.23GeV}^{e^+e^-} \to \pi^+\pi^- J/\psi}{\sigma_{\sqrt{s}=4.23GeV}^{e^+e^-} \to \pi^+\pi^- J/\psi} = (6.4 \pm 1.1)\% \\
\frac{\sigma_{\sqrt{s}=4.23GeV}^{e^+e^-} \to \pi^+\pi^- J/\psi}{\sigma_{\sqrt{s}=4.23GeV}^{e^+e^-} \to \pi^+\pi^- J/\psi} = (6.4 \pm 1.1)\% \\
\frac{\sigma_{\sqrt{s}=4.23GeV}^{e^+e^-} \to \pi^+\pi^- J/\psi}{\sigma_{\sqrt{s}=4.23GeV}^{e^+e^-} \to \pi^+\pi^- J/\psi} = (6.4 \pm 1.1)\% \\
\frac{\sigma_{\sqrt{s}=4.23GeV}^{e^+e^-} \to \pi^+\pi^- J/\psi}{\sigma_{\sqrt{s}=4.23GeV}^{e^+e^-} \to \pi^+\pi^- J/\psi} = (6.4 \pm 1.1)\% \\
\frac{\sigma_{\sqrt{s}=4.23GeV}^{e^+e^-} \to \pi^+\pi^- J/\psi}{\sigma_{\sqrt{s}=4.23GeV}^{e^+e^-} \to \pi^+\pi^- J/\psi} = (11 \pm 4)\% \\
\frac{\sigma_{\sqrt{s}=4.23GeV}^{e^+e^-} \to \pi^+\pi^- J/\psi}{\sigma_{\sqrt{s}=4.23GeV}^{e^+e^-} \to \pi^+\pi^- J/\psi} = (11 \pm 4)\% \\
\frac{\sigma_{\sqrt{s}=4.23GeV}^{e^+e^-} \to \pi^+\pi^- J/\psi}{\sigma_{\sqrt{s}=4.23GeV}^{e^+e^-} \to \pi^+\pi^- J/\psi} = (11 \pm 4)\% \\
\frac{\sigma_{\sqrt{s}=4.23GeV}^{e^+e^-} \to \pi^+\pi^- J/\psi}{\sigma_{\sqrt{s}=4.23GeV}^{e^+e^-} \to \pi^+\pi^- J/\psi} = (11 \pm 4)\% \\
\frac{\sigma_{\sqrt{s}=4.23GeV}^{e^+e^-} \to \pi^+\pi^- J/\psi}{\sigma_{\sqrt{s}=4.23GeV}^{e^+e^-} \to \pi^+\pi^- J/\psi} = (11 \pm 4)\% \\
\frac{\sigma_{\sqrt{s}=4.23GeV}^{e^+e^-} \to \pi^+\pi^- J/\psi}{\sigma_{\sqrt{s}=4.23GeV}^{e^+e^-} \to \pi^+\pi^- J/\psi} = (11 \pm 4)\% \\
\frac{\sigma_{\sqrt{s}=4.23GeV}^{e^+e^-} \to \pi^+\pi^- J/\psi}{\sigma_{\sqrt{s}=4.23GeV}^{e^+e^-} \to \pi^+\pi^- J/\psi} = (11 \pm 4)\% \\
\frac{\sigma_{\sqrt{s}=4.23GeV}^{e^+e^-} \to \pi^+\pi^- J/\psi}{\sigma_{\sqrt{s}=4.23GeV}^{e^+e^-} \to \pi^+\pi^- J/\psi} = (11 \pm 4)\% \\
\frac{\sigma_{\sqrt{s}=4.23GeV}^{e^+e^-} \to \pi^+\pi^- J/\psi}{\sigma_{\sqrt{s}=4.23GeV}^{e^+e^-} \to \pi^+\pi^- J/\psi} = (11 \pm 4)\% \\
\frac{\sigma_{\sqrt{s}=4.23GeV}^{e^+e^-} \to \pi^+\pi^- J/\psi}{\sigma_{\sqrt{s}=4.23GeV}^{e^+e^-} \to \pi^+\pi^- J/\psi} = (11 \pm 4)\% \\
\frac{\sigma_{\sqrt{s}=4.23GeV}^{e^+e^-} \to \pi^+\pi^- J/\psi}{\sigma_{\sqrt{s}=4.23GeV}^{e^+e^-} \to \pi^+\pi^- J/\psi} = (11 \pm 4)\% \\
\frac{\sigma_{\sqrt{s}=4.23GeV}^{e^$$

Y(4220) has strong coupling to spin-singlet states More decay modes to be searched for Xiao-Rui LYU HFCPV2018, 郑州

$$\frac{\sigma_{\sqrt{s}=4.23GeV}^{e^+e^- \to \gamma X(3872)}}{\sigma_{\sqrt{s}=4.23GeV}^{e^+e^- \to \pi^+\pi^- J/\psi}} = (9 \pm 3)\%$$

And the new Y's

The Zc Family at BESIII

Which is the nature of these states? Quantum numbers? Different decay channels of the same observed states? Other decay modes?

sophisticated couple channel analysis on these channels are ongoing Xiao-Rui LYU HFCPV2018, 郑州

The Y(4630)/Y(4660) after BEPCII energy upgrade

Belle

5

5.2 5.4

4.6 4.8

E_{cm} (GeV)

- Some tension between BELLE and BESIII data on $e^+e^- \rightarrow \Lambda_c^+ \overline{\Lambda_c^-}$
- BESIII future data above 4.6 GeV will follow a sharp rise of the Y(4660) or a flat cross section near threshold?

History

Steve Olsen, CHARM2018

70 years ago

16 years ago

X(3872) discovered -- molecule? -- diquark? -- molecule? -- diquark? -- ???? Aug. 2003 -- 16 years -- today

Multiquark Hybrid Hadrocharmonium

25

Molecule Threshold effects Cusps

States or/and interactions

What is the role of threshold

- --Many new observations near thresholds: D*D,D*D*, D₁D, ...
 - * Phase variations appear in many process: not unique for resonance

To have a complete picture, more investigations are desired, e.g., the consistency among direction productions and *B* hadron decays $B \to KY, Y \to X$

Charm facilities

- *p p* collider: LHCb (RUN1-4 50 fb⁻¹: 10¹⁰ reconstructed *D*)
- e⁺e⁻ colliders (more kinematic constrains, clean environment, ~100% trigger efficiency)
 - Belle-II(50 ab⁻¹: 1nb charm cross-section)
 - Threshold production (BESIII)
 - Can not compete in statistics with Hadron colliders & B-factories !!!
 - Quantum Correlations (QC) and CP-tagging are unique
 - Only hadron pairs, no extra CM Energy for pions
 - Systematic uncertainties cancellations while applying double tag technique
- $p \overline{p}$ collider: PANDA ...
- *e-p/γ-p* production (Glue-X...)

Double Tag (DT) techniques

- 100% of beam energy converted to D pair (Clean environment, kinematic constrains v Recon.)
- *D* generated in pair \Rightarrow absolute Branching fractions
- At $\psi(3770)$ charm production is $D^0 \overline{D}^0$ and $D^+ D^-$
- Fully reconstruct about 15% of $D_{(S)}$ decays

Double tag techniques: Hadronic tag on one side, on the other side for leptonic/semileptonic studies. Neutrino is reconstructed from missing energy and momentum (Double tag efficiency is high.)

see Minggang's talk

CKM matrix elements are fundamental SM parameters that describe the mixing of quark fields due to weak interaction.

- Precision measurement of CKM matrix elements
- A precise test of SM model
- New physics beyond SM?

 $D_{(S)}$ Leptonic decays

Purely Leptonic:

- Extract decay constant $f_{D(s)}$ incorporates the strong interaction effects (wave function at the origin)
- To validate Lattice QCD calculation of $f_{B(s)}$ and provide constrain of CKMunitarity

$$\Gamma(D_{(s)}^+ \to \ell^+ \nu_{\ell}) = \frac{G_F^2 f_{D_{(s)}^+}^2}{8\pi} |V_{cd(s)}|^2 m_{\ell}^2 m_{D_{(s)}^+} \left(1 - \frac{m_{\ell}^2}{m_{D_{(s)}^+}^2}\right)^2$$

Vcs and Vcd

BESIII: best precision and systematic dominant

Xiao-Rui LYU

$D_{(S)}$ Semi-Leptonic decays

Semi-leptonic: form facotr (FF)

- Measure |V_{cx}| x FF
- Charm physics:
 - CKM-unitarity $\Rightarrow |V_{cx}|$, extract FF, test LQCD
 - Input LQCD FF to test CKM-unitarity

BESIII: best precision and systematic dominant

ESI Tests of lepton flavor universality

SM prediction: $R_D = 2.66 \pm 0.01$ BESIII: $R_D = 3.21 \pm 0.64$ (preliminary) 1σ difference?

Future 20/fb @3773MeV data will improve these test.

2**σ** difference?

Xiao-Rui LYU

Re Status of $D^0 - \overline{D}^0$ mixing and CPV

(B) 44	53
	7.6
THE C	
ALARESE ACADEN	Y OF SCI

							L.K. Li B	Beauty
Decay Туре	Final State	BRLLE	Ĩ	<u>ьнср</u>	0	CLEO	₿€SⅢ	
DCS 2-body(WS)	$K^+\pi^-$	*	☆	★ ^(a)	*	✓		
DCS 3-body(WS)	$K^+\pi^-\pi^0$	0 ^(c)	☆			✓ A _{CP}	08	
CP-eigenstate	(even) <i>h</i> ⁺ <i>h</i> ⁻	☆	☆	☆ ^(b) Acp	✓ A _{CP}	<		
CP-eigenstate	(odd) $K_S^0 \phi$	√						
Self-coni 3-body	$K_S^0 \pi^+ \pi^-$	√	1	<	✓ A _{CP}	√	°5	
decay	$K_S^0K^+K^-$	0	√	0			°δ	
decay	$K_S^0 \pi^0 \pi^0$					🗸 Dalitz	° _{УСР}	
Self-conj. SCS	$\pi^+\pi^-\pi^0$	✓ A _{CP}	✓ mixing A _{CP}	✓ A _{CP}			o _δ	
3-body decay	$K^{+}K^{-}\pi^{0}$		✓ A _{CP}				08	
SCS 3-body	$K_{S}^{0}K^{\pm}\pi^{\mp}$			✓ A _{CP}		√ δ	08	
Semileptonic decay	$K^+\ell^-\nu_\ell$	√				 Image: A set of the set of the		
	$K^{+}\pi^{-}\pi^{+}\pi^{-}$	✓ R _{WS}	1	*			o _δ RS	
Multi-body(n≥4)	$\pi^+\pi^-\pi^+\pi^-$	^o A _{CP}		✓ ^(d) A _{CP}				
/(= /	$K^+K^-\pi^+\pi^-$	OAT	✓ A _T	✓ (e) A _{CP}		✓ A _{CP}	0	
	$K_{S}^{0}\pi^{+}\pi^{-}\pi^{0}$	✓ A _T						
$\psi(3770) ightarrow D^0 \overline{D^0}$ v	ia correlations					√ ₈ Кл	√ y _{CP}	

In $D^0 - \overline{D}^0$ mixing measurements: \bigstar for observation (>5 σ); \bigstar for evidence (>3 σ); \checkmark for measurement published; o for analysis on going. A_T stands for measuring CP asymmetry using T-odd correlations.

EXAMPLE 5 Determination of γ/ϕ_3 angle in CKM

34

- > The cleanest way to extract γ is from B \rightarrow DK decays:
 - current uncertainty $\sigma(\gamma) \sim 5^{\circ}$
 - however, theoretical relative error $\sim 10^{-7}$ (very small!) [JHEP 1401 (2014) 051]
 - use for "direct" vs "indirect" ("tree" vs "loop" disagreement)
 - over-constrain the Unitarity Triangle
- Information of *D decay strong phase* is needed
 - Best way is to employ quantum coherence of DD production at threshold

See Yue's talk

<i>EPJC 77, 895 (2017)</i>		PRL 116, 052001 (2	016) P	PRL113, 042002 (2014			
Mode	HFLAV2016	BESIII (%)	PDG 2014 (%)	BELLE (%)			
pK_S^0	1.59 ± 0.07	$1.52 \pm 0.08 \pm 0.03$	1.15 ± 0.30				
$pK^-\pi^+$	6.46 ± 0.24	$5.84 \pm 0.27 \pm 0.23$	5.0 ± 1.3	$6.84 \pm 0.24^{+0.21}_{-0.27}$			
$pK^0_S\pi^0$	2.03 ± 0.12	$1.87 \pm 0.13 \pm 0.05$	1.65 ± 0.50				
$pK^0_S\pi^+\pi^-$	1.69 ± 0.11	$1.53 \pm 0.11 \pm 0.09$	1.30 ± 0.35				
$pK^-\pi^+\pi^0$	5.05 ± 0.29	$4.53 \pm 0.23 \pm 0.30$	3.4 ± 1.0				
$\Lambda\pi^+$	1.28 ± 0.06	$1.24 \pm 0.07 \pm 0.03$	1.07 ± 0.28				
$\Lambda\pi^+\pi^0$	7.09 ± 0.36	$7.01 \pm 0.37 \pm 0.19$	3.6 ± 1.3				
$\Lambda\pi^+\pi^-\pi^+$	3.73 ± 0.21	$3.81 \pm 0.24 \pm 0.18$	2.6 ± 0.7				
$\Sigma^0 \pi^+$	1.31 ± 0.07	$1.27 \pm 0.08 \pm 0.03$	1.05 ± 0.28				
$\Sigma^+\pi^0$	1.25 ± 0.09	$1.18 \pm 0.10 \pm 0.03$	1.00 ± 0.34				
$\Sigma^+\pi^+\pi^-$	4.64 ± 0.24	$4.25 \pm 0.24 \pm 0.20$	3.6 ± 1.0				
$\Sigma^+ \omega$	1.77 ± 0.21	$1.56 \pm 0.20 \pm 0.07$	2.7 ± 1.0				
$\Lambda e^+ u_e$	3.18 ± 0.32	$3.63 \pm 0.38 \pm 0.20$	2.1 ± 0.6				

Improved precisions significantly with factors of 4~10

Features in studying Λ_c decays

	BESIII	Belle(-II)	LHCb
Production yields	**	****	****
Background level	****	**	**
Systematic error	****	***	**
Completeness	****	***	*
(Semi)-Leptonic mode	****	***	*
Neutron/K _L mode	****	**	☆
Photon-involved	****	****	☆
Absolute measurement	****	***	☆

BESIII has overall advantage in studying the charmed baryon decays

Prospects for Λ_{c} semi-leptonic decays

pairs

- So far, only mode $\Lambda e^+ v_{\rho}$ is measured •
- Many more semi-leptonic modes can be established at BESIII!

modes	Expected B[%]	δΒ/Β
$\Lambda l^+ v_l$	3.6	3%
$\Lambda^* l^+ v_l$	0.7	17%
$(pK^{-}, \Sigma\pi) l^{+}v_{l}$	0.7	17%
$nl^+\nu_l$	0.2	30%

	SL	δΒ/Β
D0	$B(Kev) = (3.55 \pm 0.05)\%$	1.4%
D+	B(K0ev)=(8.83±0.22)%	2.5%
Ds	B(phiev)=(2.49±0.14)%	5.6%
Ac	$B(\Lambda ev) = (2.1 \pm 0.6)\% (PDG2014) = (3.63 \pm 0.43)\% (BESIII) = (3.63 \pm 0.11)\% (new BESIII)$	29% 12% 3%

Xiao-Rui LYU

Other relevant Λ_c^+ potentials

- Studies on new Cabibbo-suppressed modes
- Many neutron modes will be firstly measured: to test isospin symmetry <u>PRD93, 056008 (2016)</u>
- Λ_c^+ hadronic weak decays
 - ✓ Decay asymmetry parameters in two-body hadronic weak decays, such as $\Lambda_c^+ \rightarrow BP$ and $\Lambda_c^+ \rightarrow BV$

→ to measure the relative phase between the S- and P-wave decays

- We can provide precise measurements on this observables
- Search for Λ_c^+ low rate decays and rare decays
 - ✓ Weak radiative decay $\Lambda_c^+ \rightarrow \gamma \Sigma^+$; predictions of BF are 10⁻⁴ ~10⁻⁵ : expected sensitivity ~10⁻⁴
 - ✓ FCNC, lepton number/family violation, baryon family violation ...: expected sensitivity~10⁻⁵

We will find more the Λ_c -decay Mosaic!

 $e^+e^- \rightarrow \Sigma_c^{(*)+} \overline{\Lambda}_c^-, \Lambda_c^{*+} \overline{\Lambda}_c^-$

(MeV)

4.74~4.90 GeV

Decay	Expt.	HHChPT	Tawfiq	Ivanov	Huang	Albertus
	[3]	[10]	et al. $\left[25\right]$	et al. [26]	et al. [27]	et al. $\left[28\right]$
$\Sigma_c^{++} \to \Lambda_c^+ \pi^+$	$1.89\substack{+0.09\\-0.18}$	input	1.51 ± 0.17	2.85 ± 0.19	2.5	2.41 ± 0.07
$\Sigma_c^+ \to \Lambda_c^+ \pi^0$	< 4.6	$> 2.3^{+0.1}_{-0.2}$	1.56 ± 0.17	3.63 ± 0.27	3.2	2.79 ± 0.08
$\Sigma_c^0 \to \Lambda_c^+ \pi^-$	$1.83\substack{+0.11 \\ -0.19}$	$1.9\substack{+0.1 \\ -0.2}$	1.44 ± 0.16	2.65 ± 0.19	2.4	2.37 ± 0.07
$\Sigma_c(2520)^{++} \to \Lambda_c^+ \pi^+$	$14.8^{+0.3}_{-0.4}$	$14.5_{-0.8}^{+0.5}$	11.77 ± 1.27	21.99 ± 0.87	8.2	17.52 ± 0.75
$\Sigma_c(2520)^+ \to \Lambda_c^+ \pi^0$	< 17	$15.2^{+0.6}_{-1.3}$			8.6	17.31 ± 0.74
$\Sigma_c(2520)^0 \to \Lambda_c^+ \pi^-$	$15.3^{+0.4}_{-0.5}$	$14.7^{+0.6}_{-1.2}$	11.37 ± 1.22	21.21 ± 0.81	8.2	16.90 ± 0.72

■ Precise determination of $\Gamma(\Sigma_c^+ \to \Lambda_c^+ \pi^0)$ can be used for for testing heavy quark symmetry and chiral symmetry *Wise; Yan et al.; Burdman, Donoghue ('92)* ■ measurements of $\Sigma_c^+ \& \Sigma_c(2520)$ widths by Belle [PRD89, 091102 (2014)]: BESIII has potential to improve the partial widths

BESIII will search for the more decay modes

Decay	HHChPT	Ivanov	Bañuls	Tawfiq	Dey	Majethiya	Fayyazuddin	Aliev	
	+QM	et al.	et al.	et al.	et al.	et al.	et al.	et al.	
$\Sigma_c^+ \to \Lambda_c^+ \gamma$	88	60.7 ± 1.5		87	98.7	60.1 - 85.6	89.0		(keV

Summary

- BESIII is successfully operating since 2008
 - Collected large data samples in the τ -charm mass region
- Many exciting results have been published:
 - $\checkmark Study of X, Y and Z states$
 - ✓ Charmed mesons and baryons
 - best measurements: $f_{D(s)}$ & FF
 - hadronic decays of the charmed mesons
 - strong phases based on neutral D quantum correlation
 - $-\Lambda_c$ physics
- **BESIII** will continue to run 6 8 years.
- **BEPCII/BESIII upgrade**

trackers, ETOF, beam energy, Top-up injection, luminosity ...

- **Future goals** roughly 50M D^0 , 50M D^+ , 15M Ds, 2M Λ_c , 10B J/ψ
- We are working on BESIII physics survey for future BESIII potentials you are welcome to join the effort.

see Dayong's and other BESIII talks

Thank you!! 谢谢!

Reaches for rare charm decays? 10-0 SM predictions and experimental reaches 10-1 Cabibbo favor **10**⁻² Single Cabibbo suppressed 10^{-3} 10^{-4} **Doubly Cabibbo suppressed** CLEO-c 10^{-5} $D^0 \rightarrow \overline{K}^{*0} \gamma / \phi \gamma / \rho \gamma / \omega \gamma$ BESIII **Radiative decays** 10⁻⁶ $D^{+} \rightarrow K^{*+} \gamma / \rho^{+} \gamma \quad D_{s}^{+} \rightarrow K^{*+} \gamma / \rho^{+} \gamma$ BESIII final/B factory 10^{-7} Long distance: Vector meson Dominance $D^0 \rightarrow \gamma \gamma / VV'(\rightarrow ll) / hV(\rightarrow ll) / hh'V(\rightarrow ll)$ LHCb Super-B 10-8 10⁻⁹ Super-τ-charm 10⁻¹⁰ $D^0 / D^+ \rightarrow \gamma \gamma / V l^+ l^- / h l^+ l^- / h h^+ l^+ l^-$ Short distance FCNC 10-11 $D^0 \rightarrow \mu^+ \mu^-$ 10-12 $D^0 \rightarrow e^+ e^-$ 10⁻¹³ **1**0⁻¹⁴ $D \rightarrow (h) \mu^+ e^-$ 10-15 Forbidden decays: LNV, LFV, BNV $D \rightarrow (hh)e^+e^+/(hh)\mu^+\mu^+$ HFCPV2018, 郑州 Xiao-Rui LYU 42

δ and γ/ϕ_3 input

- *D* hadronic parameters for a final state $f: \frac{A(\overline{D}^0 \to f)}{A(D^0 \to f)} \equiv -r_D e^{-i\delta_D}$
- Charm mixing parameters: $x = \frac{\Delta M}{\Gamma}$, $y = \frac{\Delta \Gamma}{2\Gamma}$ - Time-dependent WS $D^0 \rightarrow K^+ \pi^- \text{rate} \Rightarrow$ $y' = y \cos \delta_{K\pi} - x \sin \delta_{K\pi}$ (LHCb)
 - $-\delta_{K\pi}$: QC measurements from Charm factory
- γ/ϕ_3 measurements from $B \rightarrow D^0 K$
 - $-b \rightarrow u : \gamma/\phi_3 = argV^*_{ub}$
 - most sensitive method to constrain γ/ϕ_3 at present
 - GLW, ADS method
 - r_D , δ_D : QC measurements from Charm factory
 - GGSZ method
 - c_i , s_i : QC measurements from Charm factory

Time-integrated decay rates

- No time dependent information at Charm threshold
- Anti-symmetric wavefuction: $\Gamma^{2}_{ii} = \left| \langle i | D^{0} \rangle \langle j | \overline{D}^{0} \rangle - \langle j | D^{0} \rangle \langle i | \overline{D}^{0} \rangle \right|^{2}$
- Double tag rates:
 - $A_i^2 A_i^2 \left[1 + r_i^2 r_i^2 2r_i r_i \cos(\delta_i + \delta_i) \right]$
 - + CP tag: r=1, $\delta=0$ or π ; l^{\pm} tag: r=0
- Single and Double tag rates

	+ $z_f \equiv 2\cos\delta_f$, $r_f \equiv \frac{A_{DCS}}{A_{CF}}$, $R_M \approx \frac{x^2 + y^2}{2}$									
	C-odd	f	$ar{f}$	<i>l</i> +	ŀ	<i>CP</i> +	CP-			
	f	$R_{M}\left[1+r_{f}^{2}\left(2-z_{f}^{2}\right)+r_{f}^{4}\right]$								
	$ar{f}$	$1 + r_f^2 (2 - z_f^2) + r_f^4$	$R_M [1 + r_f^2 (2 - z_f^2) + r_f^4]$							
	l^+	r_f^2	1	R_M						
	l-	1	r_f^2	1	R_M					
	CP+	$1 + r_f (r_f + z_f)$	$1 + r_f (r_f + z_f)$	1	1	0				
	CP-	$1 + r_f (r_f - z_f)$	$1 + r_f (r_f - z_f)$	1	1	4	0			
	Single Tag	$1 + r_f^2 - r_f^2$	$+r_f^2 - r_f z_f (A - y)$			$2[1\pm(A-y)]$				
X	iao-Rui LYU	HFCPV2	2018. 郑州				4			

 $\psi(3770) \rightarrow [D^0 \bar{D}^0 - \bar{D}^0 D^0] / \sqrt{2}$ $= -[D_{CP+}D_{CP-} - D_{CP-}D_{CP+}]/\sqrt{2}$ $D_{CP+} = [D^0 \pm \bar{D}^0] / \sqrt{2}$

New forms of hadrons

Conventional hadrons consist of 2 or 3 quarks:

- QCD predicts the new forms of hadrons:
 - Multi-quark states : Number of quarks >= 4

None of the new forms of hadrons is settled !

Xiao-Rui LYU

Glueballs

- The mix of glueball with ordinary qq meson makes the situation more difficult.
- The spectrum is from unquenched LQCD calculations

Glueball candidates: f₀(1500), f₀(1700), f_J(2220), ...

• J/ ψ radiative decays are believed to be an ideal

- ► J/ψ→γφφ Phys. Rev. D 93, 112011 (2016)
- → J/ ψ →γ**ηη** Phys. Rev. D 87, 092009 (2013)

➢ J/ψ→γπ⁰π⁰ Phys. Rev. D 92, 052003 (2015) HFCPV2018, 郑州

	0+	2+	0-
J/ψ→γPP			
$J/\psi{\rightarrow}\gamma VV$			
Ϳ/ψ→γΡΡΡ			

Space-like versus Time-like Electromagnetic Form Factors

Energy scan data

World leading scan from 2.0 GeV – 3.08 GeV energy region

Nucleon and Hyperon form-factor available HFCPV2018, 郑州

Xiao-Rui LYU

