

Status and prospects of the Belle II experiment

王小龙

复旦大学

第16届重味物理和CP破坏研讨会 河南工业大学,2018年10月28日

Belle II Collaboration

- Belle II Collaboration: 26 counties/regions, 113 institutions, > 800 collaborators.
- Belle II China Group: 高能所, 中科大, 北大, 北航, 复旦, 辽宁师大, 以及苏州大学. 成员超过45名。
- 中国组网页: https://napp.fudan.edu.cn/belle2/

From Belle to Belle II

• Accelerator: KEKB \rightarrow SuperKEKB, $\mathcal{L} \times 40!$

● Detector: Belle→Belle II, a new detector with great improved performance. X.L. Wang (Fudan) Belle II Status

Achievements from B factories for Flavor Physics

- Two e^+e^- B factories: Belle/KEKB at KEK and BaBar/PEP-II at SLAC
- Very successful physics programs with a total recorded sample over 1.5 ab^{-1} $(1.25 \times 10^9 B\bar{B}).$
- Experimental confirmation of CKM mechanism as source of CPV in the SM.

X.L. Wang (Fudan)

A lot list of charmonium-like states

State	M (MeV)	Γ (MeV)	J^{PC}	Process (decay mode)	Experiment
X(3872)	3871.69 ± 0.17	< 1.2	1++	$B \to K(J/\psi \pi^+\pi^-)$	Belle (Choi et al., 2003, 2011), BABAR (Aubert et al., 2005c)
				$p \bar{p} \rightarrow (J/\psi \pi^+ \pi^-) + \cdots$	LHCb (Aaij et al., 2013a, 2015d) CDF (Acosta et al., 2004; Abulencia et al., 2006; Aaltoner et al., 2009b),
				$B \to K (J/\psi \pi^+ \pi^- \pi^0)$	D0 (Abazov et al., 2004) Belle (Abe et al., 2005), BABAR (del Amo Sanchez et al., 2010)
				$B \to K(D^0 \bar{D}^0 \pi^0)$	Belle (Gokhroo et al., 2006; Aushev et al., 2010b), BARAB (Austral et al., 2008c)
				$B \to K(J/\psi \gamma)$	BABAR (Aubert et al., 2008c) BABAR (del Amo Sanchez et al., 2010a), Belle (Bhardwa et al., 2011).
				$B \to K(\psi' \gamma)$	LHCb (Anij et al., 2012a) BABAR (Aubert et al., 2009b), Belle (Bhardwaj et al., 2011)
				$pp \rightarrow (J/\psi \pi^+ \pi^-) + \cdots$	LHCb (Aaij et al., 2014a) LHCb (Aaij et al., 2012a), CMS (Chatrchyan et al., 2013a)
				$e^+e^- \to \gamma (J/\psi \pi^+\pi^-)$	BESIII (Ablikim et al., 2014)
X(3915)	3918.4 ± 1.9	20 ± 5	0++	$B \to K(J/\psi \omega)$	Belle (Choi et al., 2005), BABAR (Aubert et al., 2008b; del Amo Sanchez et al., 2010a)
				$e^+e^- \to e^+e^-(J/\psi\omega)$	Belle (Uehara et al., 2010), BABAR (Lees et al., 2012c)
X(3940)	3942^{+9}_{-8}	37^{+27}_{-17}	$0^{-+}(?)$	$e^+e^- \rightarrow J/\psi(D^*\bar{D})$ $e^+e^- \rightarrow J/\psi(\cdots)$	Belle (Pakhlov et al., 2008) Belle (Abe et al., 2007)
X(4140)	$4146.5^{+6.4}_{-5.3}$	83^{+27}_{-25}	1++	$B \to K(J/\psi \phi)$	CDF (Aaltonen et al., 2009a), CMS (Chatrchyan et al., 2014),
				$p\bar{p} \rightarrow (J/\psi \phi) + \cdots$	D0 (Abazov et al., 2014), LHCb (Aaij et al., 2017a, 2017d, D0 (Abazov et al., 2015)
X(4160)	4156+29	139_{-65}^{+113}	$0^{-+}(?)$	$e^+e^- \rightarrow J/\psi(D^*\bar{D}^*)$	Belle (Pakhlov et al., 2008)
Y(4260)	See Y(4220) entry	1	$e^+e^- \to \gamma (J/\psi \pi^+\pi^-)$	BABAR (Aubert et al., 2005a; Lees et al., 2012b), CLEO (He et al., 2006), Belle (Yuan et al., 2007; Liu et al., 2013)
Y(4220)	4222 ± 3	48 ± 7	1	$\begin{array}{l} e^+e^- \rightarrow (J/\psi\pi^+\pi^-)\\ e^+e^- \rightarrow (h,\pi^+\pi^-)\\ e^+e^- \rightarrow (\chi_c \phi \omega)\\ e^+e^- \rightarrow (J/\psi\eta)\\ e^+e^- \rightarrow (rX(3872))\\ e^+e^- \rightarrow (\pi^-Z^+_c(3900))\\ e^+e^- \rightarrow (\pi^-Z^+_c(4020)) \end{array}$	BESIII (Ablikim et al., 2017c) BESIII (Ablikim et al., 2017a) BESIII (Ablikim et al., 2015g) BESIII (Ablikim et al., 2015g) BESIII (Ablikim et al., 2014d) BESIII (Ablikim et al., 2013b) BESIII (Ablikim et al., 2013b)
X(4274)	4273^{+19}_{-9}	56^{+14}_{-16}	1++	$B \to K(J/\psi \phi)$	CDF (Aaltonen et al., 2017), CMS (Chatrchyan et al., 2014) LHCb (Aaij et al., 2017a, 2017d)
X(4350)	4350.6+4.6	$13.3^{+18.4}_{-10.0}$	$(0/2)^{++}$	$e^+e^- \rightarrow e^+e^-(J/\psi\phi)$	Belle (Shen et al., 2010)
Y(4360)	4341 ± 8	102 ± 9	1	$e^+e^- \rightarrow \gamma(\psi'\pi^+\pi^-)$	BABAR (Aubert et al., 2007; Lees et al., 2014),
				$e^+e^- \to (J/\psi\pi^+\pi^-)$	Belle (Wang et al., 2007, 2015) BESIII (Ablikim et al., 2017c)
Y(4390)	4392 ± 6	140 ± 16	1	$e^+e^- \rightarrow (h_c\pi^+\pi^-)$	BESIII (Ablikim et al., 2017a)
X(4500)	4506^{+16}_{-19}	92^{+30}_{-21}	0++	$B \rightarrow K(J/\psi \phi)$	LHCb (Aaij et al., 2017a, 2017d)
X(4700)	4704^{+17}_{-26}	120_{-45}^{+52}	0^{++}	$B \rightarrow K(J/\psi \phi)$	LHCb (Aaij et al., 2017a, 2017d)
Y(4660)	4643 ± 9	72 ± 11	1	$e^+e^- \rightarrow \gamma(\psi'\pi^+\pi^-)$ $e^+e^- \rightarrow \gamma(\Lambda^+\Lambda^-)$	Belle (Wang et al., 2007, 2015), BABAR (Aubert et al., 2007; Lees et al., 2014) Balla (Pakhlava et al., 2008)

X.L. Wang (Fudan)

A lot list of charged charmonium-like states

State	M (MeV)	Γ (MeV)	J^{PC}	Process (decay mode)	Experiment
$Z_{c}^{+,0}(3900)$	3886.6 ± 2.4	28.1 ± 2.6	1+-	$e^+e^- \to \pi^{-0}(J/\psi\pi^{+,0})$	BESIII (Ablikim et al., 2013a, 2015f), Belle (Liu et al., 2013)
				$e^+e^- \rightarrow \pi^{-,0}(D\bar{D}^*)^{+,0}$	BESIII (Ablikim et al., 2014b, 2015e)
$Z_c^{+,0}(4020)$	4024.1 ± 1.9	13 ± 5	$1^{+-}(?)$	$e^+e^- \rightarrow \pi^{-D}(h_e\pi^{+B})$ $e^+e^- \rightarrow \pi^{-D}(D^*\bar{D}^*)^{+D}$	BESIII (Ablikim et al., 2013b, 2014c) BESIII (Ablikim et al., 2014a, 2015d)
$Z^{+}(4050)$	$4051\substack{+24\\-43}$	82^{+51}_{-55}	7^{2+}	$B \to K(\chi_{c1}\pi^+)$	Belle (Mizuk et al., 2008), BABAR (Lees et al., 2012a)
$Z^{+}(4200)$	4196_{-32}^{+38}	370^{+99}_{-149}	1+	$B \rightarrow K(J/\psi \pi^+)$ $B \rightarrow K(\psi' \pi^+)$	Belle (Chilikin et al., 2014) LHCb (Aaij et al., 2014b)
$Z^+(4250)$	$4248\substack{+185\\-45}$	177^{+321}_{-72}	7^{2+}	$B \to K(\chi_{c1}\pi^+)$	Belle (Mizuk et al., 2008), BABAR (Lees et al., 2012a)
$Z^+(4430)$	4477 ± 20	181 ± 31	1+	$B \to K(\psi' \pi^+)$	Belle (Choi et al., 2008; Mizuk et al., 2009), Belle (Chilikin et al., 2013), LHCb (Aaij et al., 2014b, 2015b)
				$B \rightarrow K(J\psi \pi^+)$	Belle (Chilikin et al., 2014)
$P_c^+(4380)$	4380 ± 30	205 ± 88	$(\frac{1}{2}/\frac{5}{2})^{\mp}$	$\Lambda_b^0 \rightarrow K(J/\psi p)$	LHCb (Aaij et al., 2015c)
$P_{c}^{+}(4450)$	4450 ± 3	39 ± 20	$(\frac{5}{2}/\frac{5}{2})^{\pm}$	$\Lambda_b^0 \rightarrow K(J/\psi p)$	LHCb (Aaij et al., 2015c)
$Y_{k}(10860)$	$10891.1^{+3.4}_{-3.8}$	53.7 - 7.2	1	$e^+e^- \rightarrow (\Upsilon(nS)\pi^+\pi^-)$	Belle (Chen et al., 2008; Santel et al., 2016)
$Z_{b}^{+,0}(10610)$	10607.2 ± 2.0	18.4 ± 2.4	1+-	$Y_b(10860) \rightarrow \pi^{-,0}\bigl(\Upsilon(nS)\pi^{+,0}\bigr)$	Belle (Bondar et al., 2012; Garmash et al., 2015), Belle (Krokovny et al., 2013)
				$\begin{array}{l} Y_{\delta}(10860) ightarrow \pi^{-}(h_{\delta}(nP)\pi^{+}) \\ Y_{\delta}(10860) ightarrow \pi^{-}(BB^{+})^{+} \end{array}$	Belle (Bondar et al., 2012) Belle (Garmash et al., 2016)
$Z_{k}^{+}(10650)$	10652.2 ± 1.5	11.5 ± 2.2	1+-	$\begin{array}{l} Y_{b}(10860) ightarrow \pi^{-}(\Upsilon(nS)\pi^{+}) \\ Y_{b}(10860) ightarrow \pi^{-}(h_{b}(nP)\pi^{+}) \\ Y_{b}(10860) ightarrow \pi^{-}(B^{+}\bar{B}^{+})^{+} \end{array}$	Belle (Bondar et al., 2012; Garmash et al., 2015) Belle (Bondar et al., 2012) Belle (Garmash et al., 2016)

• Rough summary of XYZ discoveries:

- Belle: X(3872), X(3915), X(3940), Y(4160), Y(4350), Y(4660), Y(4630), $Z_c(3900)$, Z(4050), Z(4200), Z(4250), Z(4430), $Z_b(10610)$, $Z_b(10650)$, $X(3860)^*$
- BaBar: Y(4260), Y(4360) (Y(4324)).
- BESIII: $Z_c(3900)$, Y(4220).
- LHCb: $P_c(4380)$, $P_c(4450)$, X(4700).
- China group contributions: Y(4008), Y(4260), X(4350), Y(4360), Y(4660), Z_c(3900), ...

S. Olsen, T. Skwarnicki and D. Zieminska: Rev. Mod. Phys. 90, 015003(2018)

X.L. Wang (Fudan)

Belle II Status

SuperKEKB/Belle II overall schedule

Current schedule

- First collisions on 4/26/2018, 8 years after KEKB and Belle being shut down.
- Phase 2 until July 17th.
- On the way to Phase III: Physics Run.

The SuperKEKB

A lot of new designs

The final focus: Key of achieving the goal of $L = 0.8 \times 10^{36} \text{ cm}^{-2} \text{s}^{-1}$

QCS-L Cryostat

QCS-R Cryostat

The superconducting final focus system

X.L. Wang (Fudan)

Belle II Status

Large crossing angle nano-beams!

- As expected, the effective bunch length is reduced from ~ 10 mm (KEKB) to 0.5 mm (SuperKEKB).
- Measured the bunch length in two track events in Belle II data.

Measure the vertical height of nanobeams

- When $L_{peak} = 0.5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ got during Phase 2, the vertical spot ~ 700 nm high.
- For early Phase 3, we will continue with $\beta^* = 3$ mm. The goal is $\beta^* \sim 0.3$ mm.
- $\bullet\,$ The record the vertical spot size is 400nm and beam currents of only ~ 15 mA.
- Heading downwards but still struggling with beam-beam blow-up, a major issue for Phase3.
- The final goal is $\mathcal{O}(50~\text{nm})$ with full capability of the QCS system.

X.L. Wang (Fudan)

Belle II Status

SuperKEKB achievements at Phase II

Keep on squeezing the two beams with the superconducting final focus $\beta_y^* = 3$ mm.

$$L_{peak} = 5.5' \ 10^{33} \ / \ cm^2 \ / \ sec$$
 Phase 2,
July 2018

- N.B. still a long way to go with the superconducting final focus (one order of magnitude in β_u^*)
- Luminosity tuning has priority. When accelerator physicists become tired, Belle II takes data (usually owl shift). Only able to record 0.5 fb⁻¹.
- Note $N_{bunch} = 395$ here, one expects $L_{peak} = 2.2 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ with $N_{bunch} = 1576$.

X.L. Wang (Fudan)

Belle II Status

Cut view of Belle II detector

H = 7.1m, L = 7.4m, W = 1400t

Advanced & Innovative Technologies used in Belle II

- Pixelated photo-sensors play a central role. Collaboration with Industry
 - MCP-PMTs in the iTOP
 - HAPDs in the ARICH
 - SiPMs in the KLM
 - OEPFET pixel sensors!
- Waveform sampling with precise timing. Front-end custom ASICs (Application Specific Integrated Circuits) for all subsystems.
 - 1 KLM: TARGETX ASIC
 - 2 ECL: New waveform sampling backend with good timing
 - O TOP: IRSX ASIC
 - ARICH: KEK custom ASIC
 - 6 CDC: KEK custom ASIC
 - SVD: APV2.5 readout chip adapted from CMS
- DAQ with high performance network switches, large HLT software trigger farm
- a 21th century HEP experiment.

Detector highlights

A modern DAQ and readout system

- Belle2link by IHEP; Dr. Chunhua Li (辽师大) is the previous convener of HLT group.
- Front-end readout electronics and Gb fiber optic link (Belle2link) to the back-end.
- ROI (Region of Interest) for PXD data volume.

X.L. Wang (Fudan)

Belle II Status

Sub-detector installation 2015 KLM May 2016: TOP Oct. 2016: CDC Jan. 2017 BWD ECL Aug.2017:ARICH VXD: 2017 Nov. Apr 2017 Belle roll-in

Most of the Belle II detector subsystems are working well now!

Signals involving photons (ECL)

$\frac{dE}{dx}$ from CDC for PID

Signals involving charged tracks

TOP for Particle Identification: K^{\pm} , p and π^{\pm}

- The charged correlation with the slow pion determines which track is the kaon (or pion)
- Kinematically identified kaon from a D^{*+} in the TOP.
- Cherenkov x vs. t pattern (mapping of the Cherenkov ring):

Belle II Status

Rediscovery of $D_s \to \phi \pi^+$ with $\phi \to K^+ K^-$

• Signals with no PID:

FIG. 1: This figure shows $M[(K^+K^-)\pi^+]$ distribution, which was produced using phase-II 306 ph⁻¹ hadron skim data. No PID criteria are applied to any of the charged tracks $(K^\pm\pi^+)$. Selection criteria and further details are described in the internal note BELLE2-NOTE-PII-2018-2026.

• Signals with two identified charged kaons:

FIG. 2: This figure shows $M[(K^+K^-)\pi^+]$ distribution, which was produced using phase-II 366 pb⁻¹ hadron skim data. Combined PID criteria, Prob(K:st) >0.5 for K^\pm tracks and Prob(π :K) >0.5 for π^+ tracks are applied. Selection criteria and further details are described in the internal note BELLE=NOTE-PH-2018 408.

Belle II Status

R_2 distribution

• Fox-Wolfram moment:

$$H_l = \sum_{ij} |p_i| |p_j| P_l(\cos \theta_{ij}) \tag{1}$$

• $R_2 = H_2/H_0$ is very powerful in distinguishing $B\bar{B}$ component from others.

FIG. 1: R_2 distribution with Belle exp 5 data.

FIG. 9: R_2 distribution with Belle II exp 3 data (prod3 250 pb⁻¹).

B mesons from Belle II

• Rediscovery of *B* mesons in June, shown at ICHEP2018.

• Use the full Phase 2 dataset and apply the FEI (Full Event Interpretation) technique based on boosted decision trees (BDTs, a machine learning technique).

Onwards to Phase 3 and the Physics Run

- VXD = PXD+SVD
- PXD installation ongoing well at KEK.

叶桦(DESY)正在KEK负责相关工作。复旦博士后刘清源 也正在DESY参与PXD的工作。

• SVD installation, finished in July, 2018

• Successful marriage of the PXD and SVD, current highlight of Belle II.

Luminosity and prospects

- 2020: about twice of the Belle data sample.
- 2021: $\sim 5 \text{ ab}^{-1}$, enough for searching new signals, especially for XYZ!
- 2022: $10 15 \text{ ab}^{-1}$, ≥ 10 Belle experiments.

Book of Belle II Physics is available at arXiv:1808.10567

Prog. Theor. Exp. Phys. 2018, 00000 (681 pages) DOI: 10.1003/ptep/000000000

The Belle II Physics Book (Draft v1.0)

X.L. Wang (Fudan)

Emi Kou¹, Phillip Urquijo², Therefore the Statenstion³, and The B2TiP theory community³

Luminosity and prospects

- 2020: about twice of the Belle data sample.
- 2021: $\sim 5 \text{ ab}^{-1}$, enough for searching new signals, especially for XYZ!
- 2022: $10 15 \text{ ab}^{-1}$, ≥ 10 Belle experiments.

Book of Belle II Physics is available at arXiv:1808.10567

Prog. Theor. Exp. Phys. 2018, 00000 (681 pages) DOI: 10.1093/ptep/000000000

The Belle II Physics Book (Draft v1.0)

X.L. Wang (Fudan)

Emi Kou¹, Phillip Urquijo², Therefore the Statenstion³, and The B2TiP theory community³

Prospects of CPV

Processes for *XYZ*

FIG. 12. Processes that produce $c\bar{c}$ pairs in e^+e^- collisions near $E_{\rm c.m.} = 10.6$ GeV: (a) $B \to K(c\bar{c})$ decays, (b) two-photon fusion processes, (c) e^+e^- annihilation into $c\bar{c}c\bar{c}$, and (d) initial state radiation.

And: $\Upsilon(1, 2, 3S)$ decays, continuum productions...

The China group at Belle II

Past & now at Belle II

- China group made great contribution to Belle II
 - Belle2link (IHEP)
 - PXD DAQ (IHEP)
 - B2TIP physics potential study (BUAA)
- China group is contributing more
 - Belle II maintenances and calibrations: CDC by IHEP, KLM by Fudan+USTC+SUDA, HLT by LNNU.
 - KLM detector (Fudan, SUDA)
 - Computing (BUAA, Fudan)
 - PXD, SVD, Trigger/DAQ, B-field mapping, ...
 - Generator, Data validation, IP profile, luminorsity, ...
 - DAQ upgrade: IHEP, USTC, Fudan

Future at Belle II

- · Hardware, electronics, computing
 - Fudan: hardware lab based on KLM, computing
 - IHEP: Belle II trigger, DAQ upgrade
 - BUAA: computing cluster joining Belle II GRID
 - DAQ upgrade: Fudan, USTC, IHEP

Physics

- · Where China group has advantage
 - DD-mixing and CPV
 - Exotics: XYZ & quarkonium, T_{cs} , T_{cc} , $D^*(2380)$,...
- · New idea, new method
 - Lepton universality (R_K, R_D, R_{D^*})
 - Semileptonic decays using the B decay vertex
 - Dark sector
- What are the hot topics of heavy flavor physics? What can China group do?

Summary

- Belle II has finished the detector construction.
- Belle II had the first collisions on April 26, 2018, and the Phase 2 was until July 17th.
- The Phase 2 got very impressive results from both the SuperKEKB accelerator and the Belle II detector.
- $L_{peak} = 0.55 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ was achieved with a quarter of the number of bunches.
- The nano-beam scheme is working well and the Belle II detector has very good performance!
- Belle II is going to start physics running in 2019, coming back the game.
- 0.8×10^{36} cm⁻²s⁻¹ will make Belle II a luminosity revolution experiment, and open new windows for various physics topics.
- What can we do with the coming huge Belle II data?

Welcome to join Belle II ! Thank you!

Back-up

Machine Parameters

Machine Parameters

2017/September/1	LER	HER	unit	
E	4.000	7.007	GeV	
I.	3.6	2.6	А	
Number of bunches	2,5	500		
Bunch Current	1.44	1.04	mA	
Circumference	3,016	5.315	m	
ε _x /ε _γ	3.2(1.9)/8.64(2.8)	4.6(4.4)/12.9(1.5)	nm/pm	():zero current
Coupling	0.27	0.28		includes beam-beam
βx*/βy*	32/0.27	25/0.30	mm	
Crossing angle	8	mrad		
α _p	3.20×10 ⁻⁴	4.55×10 ⁻⁴		
σδ	7.92(7.53)x10 ⁻⁴	6.37(6.30)x10 ⁻⁴		():zero current
Vc	9.4	15.0	MV	
σz	6(4.7)	5(4.9)	mm	():zero current
Vs	-0.0245	-0.0280		
v_x/v_y	44.53/46.57	45.53/43.57		
Uo	1.76	2.43	MeV	
$\tau_{x,y}/\tau_s$	45.7/22.8	58.0/29.0	msec	
ξx/ξy	0.0028/0.0881	0.0012/0.0807		
Luminosity	8x1	1035	cm ⁻² s ⁻¹	

Some golden observables (I)

Pure-leptonic and semi-leptonic B decays

			wery lab 1						
	Process	Observable	Theory	Sys. limit	Disce VS LHCb	v ⁸ Belle	Anomal	5 FAP	
•	$B \rightarrow \pi \ell \nu_l$	$ V_{ub} $	* * *	10-20	* * *	***	**	*	
	$B \rightarrow X_u \ell \nu_\ell$	$ V_{ub} $	**	2-10	***	**	***	*	
	$B \to \tau \nu$	Br.	***	>50(2)	***	***	*	***	
	$B \rightarrow \mu \nu$	Br.	***	>50(5)	* * *	***	*	***	
	$B \to D^{(*)} \ell \nu_{\ell}$	$ V_{cb} $	***	1-10	***	**	**	*	
	$B \to X_c \ell \nu_\ell$	$ V_{cb} $	* * *	1-5	* * *	**	**	**	
	$B \rightarrow D^{(*)} \tau \nu_{\tau}$	$R(D^{(*)})$	* * *	5 - 10	**	* * *	* * *	* * *	
	$B \rightarrow D^{(*)} \tau \nu_{\tau}$	P_{τ}	* * *	15 - 20	* * *	* * *	**	* * *	
	$B \to D^{**} \ell \nu_{\ell}$	Br.	*	-	**	***	**	-	

Time dependent CPV

$B \rightarrow J/\psi K_S$	ϕ_1	***	5-10	**	**	*	*
$B \rightarrow \phi K_S$	ϕ_1	**	$>\!50$	**	***	*	***
$B \rightarrow \eta' K_S$	ϕ_1	**	$>\!50$	**	***	*	***
$B ightarrow J/\psi \pi^0$	ϕ_1	***	$>\!50$	*	***	-	-
$B \rightarrow \rho^{\pm} \rho^0$	ϕ_2	* * *	_	*	***	*	*
$B \to \pi^0 \pi^0$	ϕ_2	**	$>\!50$	* * *	* * *	**	**
$B \rightarrow \pi^0 K_S$	$S_{\rm CP}$	**	$>\!50$	***	***	**	**

Some golden observables (II)

Radiative and electroweak penguin B decays

		rt) [ab ^{-1]}					
	. 10			Discove	5× 1 .		
Process	Observable	Theory	Sy ^{5.} limi	N VS LHC	o vs Belle	Anomal	4 1519
$B \rightarrow K^{(*)} \nu \nu$	$Br., F_L$	***	$>\!50$	***	***	*	**
$B \rightarrow X_{s+d}\gamma$	$A_{\rm CP}$	***	$>\!50$	***	***	*	**
$B \rightarrow X_d \gamma$	$A_{\rm CP}$	**	$>\!50$	***	***	-	**
$B \rightarrow K_S \pi^0 \gamma$	$S_{K_S\pi^0\gamma}$	**	$>\!50$	**	***	*	***
$B \rightarrow \rho \gamma$	$S_{\rho\gamma}$	**	$>\!50$	***	***	-	***
$B \rightarrow X_s l^+ l^-$	Br.	* * *	$>\!50$	* * *	**	**	* * *
$B \rightarrow X_s l^+ l^-$	R_{X_s}	* * *	$>\!50$	* * *	* * *	**	* * *
$B \to K^{(*)} e^+ e^-$	$R(K^{(*)})$	* * *	$>\!50$	**	* * *	* * *	* * *
$B \rightarrow X_s \gamma$	Br.	**	1-5	***	*	*	**
$B_{d,(s)} \to \gamma \gamma$	$Br., A_{CP}$	**	>	**	**	-	**
			50(5)				
$B \to K^* e^+ e^-$	P'_5	**	$>\!50$	* * *	**	* * *	* * *
$B \rightarrow K \tau l$	Br.	***	>50	**	***	**	***

$B \rightarrow D^{(*)} l \nu$: challenge to lepton universality

- Theoretically clean channel in SM
- Charged Higgs can contribute to the decay
- $R(D^{(*)})$ is sensitive parameter to BSM!

$B \to K^* \ell^+ \ell^-$: yet another smoking gun

Interesting discrepancy as well as measured in P5'

K*ee: ~200 events/ab⁻¹ K*μμ: ~280 events/ab⁻¹

Note: LHCb value is extrapolated from run-1 result

Compare to KEKB

Figure 2.1: Schematic view of beam collision in the Nano-Beam scheme.

	KEKB Achieved	SuperKEKB
Energy (GeV) (LER/HER)	3.5/8.0	4.0/7.0
ξ_y	0.129/0.090	0.090/0.088
$\beta_y^* (\text{mm})$	5.9/5.9	0.27/0.41
I(A)	1.64/1.19	3.60/2.62
Luminosity $(10^{34} \text{cm}^{-2} \text{s}^{-1})$	2.11	80

Table 2.1: Fundamental parameters of SuperKEKB and present KEKB.

Nano-beam parameters of SuperKEKB

		LER (e+)	HER (e-)	units
Beam Energy	E	4	7	GeV
Half Crossing Angle	ϕ	41	1.5	mrad
Horizontal Emittance	ε_x	3.2(2.7)	2.4(2.3)	nm
Emittance ratio	$\varepsilon_y/\varepsilon_x$	0.40	0.35	%
Beta Function at the IP	β_x^*/β_y^*	32 / 0.27	25 / 0.41	$\mathbf{m}\mathbf{m}$
Horizontal Beam Size	σ_x^*	10.2(10.1)	7.75(7.58)	$\mu { m m}$
Vertical Beam Size	σ_y^*	59	59	nm
Betatron tune	ν_x/ν_y	45.530/45.570	58.529/52.570	
Momentum Compaction	α_c	2.74×10^{-4}	1.88×10^{-4}	
Energy Spread	σ_{ε}	$8.14(7.96) \times 10^{-4}$	$6.49(6.34) \times 10^{-4}$	
Beam Current	Ι	3.60	2.62	Α
Number of Bunches/ring	n_b	25	603	
Energy Loss/turn	U_{θ}	2.15	2.50	MeV
Total Cavity Voltage	V_c	8.4	6.7	MV
Synchrotron Tune	ν_s	-0.0213	-0.0117	
Bunch Length	σ_z	6.0(4.9)	5.0(4.9)	$\mathbf{m}\mathbf{m}$
Beam-Beam Parameter	ξ_y	0.0900	0.0875	
Luminosity	Ľ	$8 \times$	10^{35}	$\mathrm{cm}^{-2}\mathrm{s}^{-1}$

Table 2.2: Machine Parameters of SuperKEKB. Values in parentheses denote parameters at zero beam currents.