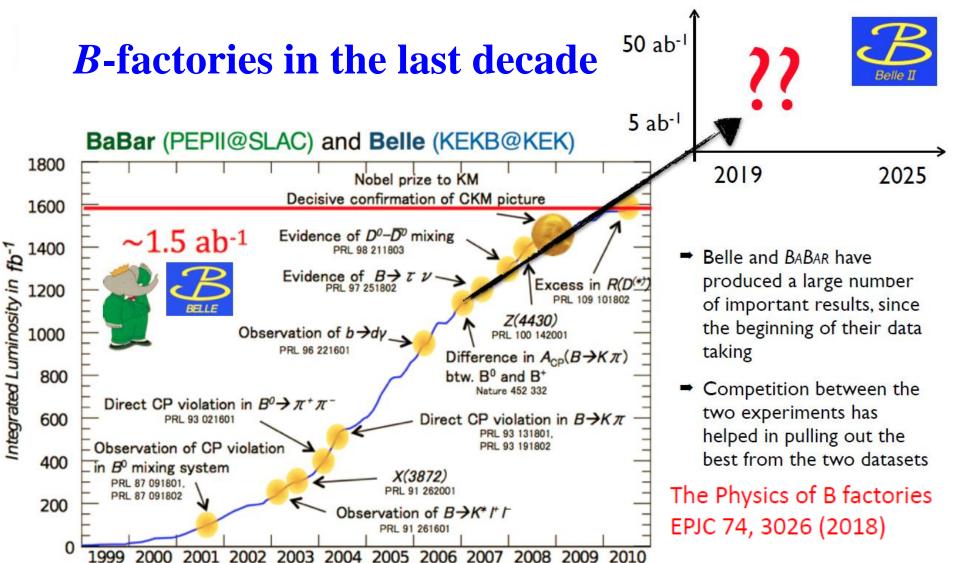
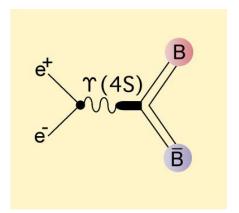


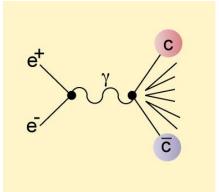
Recent Belle results on (charmed) baryons and Belle II prospects of baryons

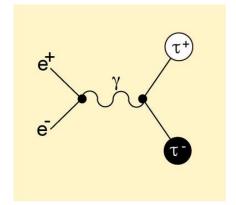

Chengping Shen Beihang University, Beijing

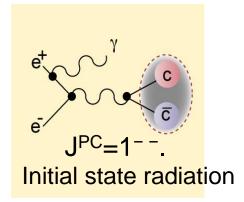
全国第十六届重味物理和CP破坏研讨会 (HFCPV-2018) 郑州,2018年10月26日

Outline

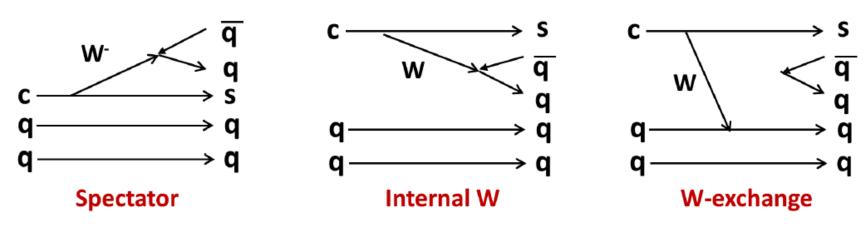

- Introduction
- Singly (Charmed) Baryon results at Belle
- Belle II status
- Prospects of baryon study at Belle II
- Summary

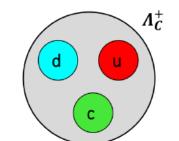


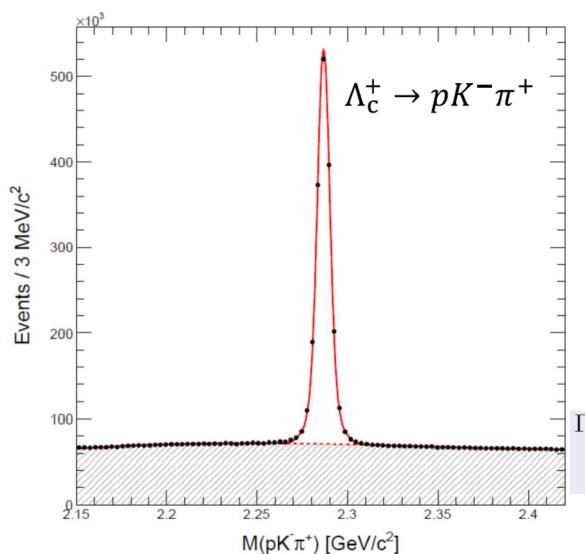

Belle II will provide a significantly larger data sample (x50 Belle) that will allow to continue the investigation with a much more powerful instrument


Year

The Physics Program




- → a (Super) B-factory (~1.1 x 10⁹ BB pairs per ab⁻¹);
- → a (Super) charm factory ($\sim 1.3 \times 10^9 \text{ cc}$ pairs per ab⁻¹);
- a (Super) τ factory (~0.9 x 10⁹ $\tau^+\tau^-$ pairs per ab⁻¹);
- → thanks to the Initial State Radiation, we can effectively scan the range [0.5 – 10] GeV and measure the e⁺e⁻ → light hadrons cross-section very precisely;
- → finally we can exploit the clean e⁺e⁻ environment to probe the existence of exotic hadrons, dark photons/Higgs, light Dark Matter particles, ...


The Charmed Baryon Physics

- The weak decay of charmed baryon has not been understood well.
- Three diagrams contribute in the tree level, but their strengths are not known.
- Ground state charm baryon is a good laboratory for studying strange baryons as decay proceed via c → s transition.
- Belle has collected $\sim 1 \text{ ab}^{-1} \text{ e}^+\text{e}^-$ data samples (mainly at $\Upsilon(4S)$).
 - $10^9 e^+e^- \rightarrow c\bar{c}$ samples
 - $7.7 \times 10^8 \ B\bar{B}$ samples
- Huge data sample enable to study various charmed baryons.

Huge statistics, good quality

> 1 M events reconstructed

Resolution: < 10 MeV FWHM

S/N ~ 10

$$\Gamma(\Lambda_c \to p^+ K^- \pi^+) / \Gamma_{total}$$

5.84 ± 0.27 ± 0.23 BES3 2016
6.84 ± 0.24^{+0.21}_{-0.27} Belle 2014

Observation of an excited Ω^- baryon

$$\Omega^{-} = s s s (S=-3, I=0)$$

PRL 121, 052003 (2018)

- 1. Ω^- excited states have proved difficult to find
- Only one excited Ω^- states, $\Omega(2250)$, has been confirmed until now.
- In addition, the evidence for two other states of Ω^- were reported.
- These Ω^- excited states' masses are much higher than the ground state (>600MeV).
- 2. $\Omega^{*-} \to \Omega^{-} + \pi^{0}$ is highly suppressed since Ω^{-} is isospin zero
- 3. Preferred modes

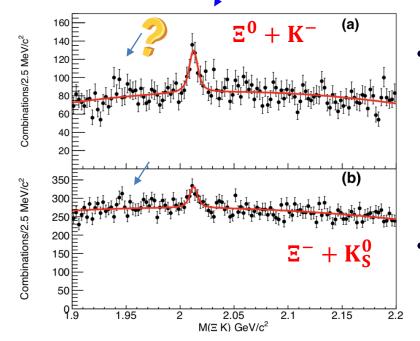
•
$$\Omega^{*-} \rightarrow \Xi^- + K_S^0 \checkmark$$

•
$$\Omega^{*-} \rightarrow \Xi^0 + K^- \checkmark$$

- low-lying states
- Analogous to $\Omega_c^0 \to \Xi_c^+ K^-$

[R. Aaij et al. PRL 118, 182001 (2017)] [J. Yelton et al. PRD 97, 051102 (2018)]

Data sample	Luminosity(fb ⁻¹)	Events (× 10 ⁸)
Υ(1 <i>S</i>)	5.7	1.02
$\Upsilon(2S)$	24.9	1.58
$\Upsilon(3S)$	2.9	-


- The decays of these narrow resonances proceed via gluons.
- The production of baryon are enhanced.

Observation of an excited Ω^- baryon

Results & Summary

$$\mathcal{R} = \frac{\mathcal{B}(\Omega^{*-} \to \Xi^0 K^-)}{\mathcal{B}(\Omega^{*-} \to \Xi^- \overline{K}^0)} = 1.2 \pm 0.3$$

Data	Mode	Mass (MeV/c^2)	Yield	$\Gamma({ m MeV})$	$\chi^2/\mathrm{d.o.f.}$	n_{σ}
$\Upsilon(1S, 2S, 3S)$	$\Xi^0 K^-, \Xi^- K_S^0$	2012.4 ± 0.7	$242 \pm 48, \ 279 \pm 71$	$6.4^{+2.5}_{-2.0}$	227/230	8.3
	(simultaneous)					
$\Upsilon(1S, 2S, 3S)$	Ξ^0K^-	2012.6 ± 0.8	239 ± 53	6.1 ± 2.6	115/114	6.9
$\Upsilon(1S, 2S, 3S)$	$\Xi^-K_S^0$	2012.0 ± 1.1	286 ± 87	6.8 ± 3.3	101/114	4.4
Other	$\Xi^0 K^-$	2012.4 (Fixed)	209 ± 63	6.4 (Fixed)	102/116	3.4
Other	$\Xi^-K_S^0$	2012.4 (Fixed)	153 ± 89	6.4 (Fixed)	133/116	1.7

PRL 121, 052003 (2018)

- The gap in the spectrum between the ground state and this excited state (\sim 340 MeV) is smaller than other Ω^- excited states, which is more close to the negative-parity orbital excitations of many other baryons.
- The narrow width observed implies that the quantum number $J^P = \frac{3}{2}$ is preferable.

Theoretical interpretation for the $\Omega^*(2012)$

It is generally accepted that $\Omega^*(2012)$ is 1P orbital excitation of the ground state Ω baryon with three strange quark, whose quantum numbers are $J^P = \frac{3}{2}$.

From PRD 98, 056013 (2018)

Notably, the newly observed $\Omega^*(2012)$ is revealed as a KE(1530) hadronic molecule.

[PRD 98, 054009 (2018), PRD 98,

056013 (2018), arXiv:1807.02145,

arXiv:1807.06485, arXiv:1807.06485]

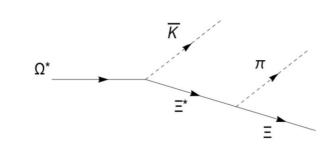


FIG. 1: The three-body decays of $\Omega(2012)$ in the $K\Xi(1530)$ molecular picture.

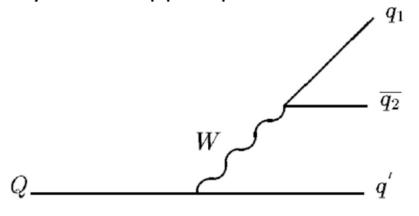
The $K\Xi\pi$ three-body component is largely dominant.

Mode	$J^{P} = \frac{3}{2}^{-}$ $\Omega(2012) \ (K\Xi(1530))$		
	Widths (MeV)	Branch Ratio($\%$)	
$K\Xi$	0.4	14.3	
$K\pi\Xi$	2.4	85.7	
Total	2.8	100.0	

The number of expected $\Omega(2012)$ events at Belle

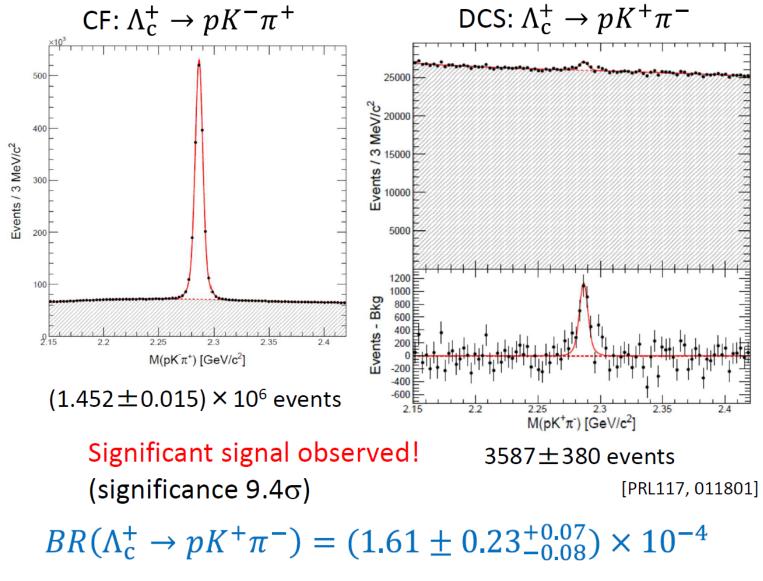
$$N^{ ext{expected}} = N_{\Omega}^{ ext{total}} \times \mathcal{B}^{ ext{product}} \times \varepsilon \times \mathcal{B}(\Omega(2012) \to KE/KE\pi)$$

Channel	3	$\mathcal{B}^{ ext{decay}}$	$\mathcal{B}(\Omega$ (2012) $ ightarrow$ KE/KE π)	$\mathbf{N}^{ ext{obs}}$	Nexpected
$\mathcal{Z}^-K_S^0$	15.7%	$\mathcal{B}(K_S^0 \to \pi^+\pi^-) \times \mathcal{R}(\bar{K}^0 \to K_S^0)$	6.5%	279	-
$\mathcal{\Xi}^0 K^-$	4.0%	$\mathcal{B}(\pi^0 o \gamma \gamma)$	7.8%	242	
$\mathcal{Z}^-K^-\pi^+$	9.4%	-	28.6%	-	2091
$\mathcal{Z}^-K_S^0\pi^0$	1.5%	$\mathcal{B}(K_S^0 \to \pi^+\pi^-) \times \mathcal{B}(\pi^0 \to \gamma\gamma) \times \mathcal{R}(\bar{K}^0 \to K_S^0)$	14.3%	-	55
$\mathcal{E}^0 K^0_S \pi^-$	2.3%	$\mathcal{B}(\pi^0 \to \gamma \gamma) \times \mathcal{B}(K_S^0 \to \pi^+ \pi^-) \times \mathcal{R}(\bar{K}^0 \to K_S^0)$	28.6%	-	177
$\mathcal{E}^0K^-\pi^0$	0.8%	$\mathcal{B}(\pi^0 \to \gamma \gamma) \times \mathcal{B}(\pi^0 \to \gamma \gamma)$	14.3%	-	82


- $\mathcal{B}(\Omega(2012) \to K\Xi)$: $\mathcal{B}(\Omega(2012) \to K\Xi\pi) = 14.3 : 85.7$ in Ref.[arxiv:1807.00997].
- $\mathcal{T}[\Xi^{-}\overline{K}^{0}]: \mathcal{T}[\Xi^{0}K^{-}] = 1: 1.2 \text{ from PRL121, 052003 (2018)}$
- The isospin analysis shows $\mathcal{T}[\Xi^-K^-\pi^+]$: $\mathcal{T}[\Xi^-\overline{K}^0\pi^0]$: $\mathcal{T}[\Xi^0\overline{K}^0\pi^-]$: $\mathcal{T}[\Xi^0K^-\pi^0] = 2:1:2:1$
- In the calculation of $\mathcal{B}^{\text{decay}}$, the common \mathcal{B} , e.g., $\mathcal{B}(\Lambda \to p\pi^-)$ is cancelled. $\mathcal{R}(\overline{K}^0 \to K_S^0) = 0.5$
- If theoretical predictions are correct, we will most likely observe $\Omega(2012)$ in mode $\Omega(2012) \to \Xi^- K^- \pi^+$.

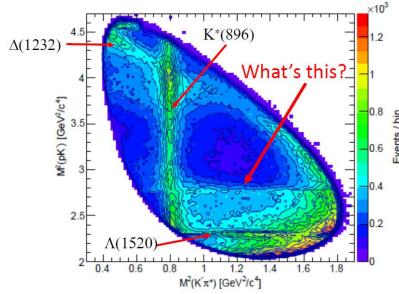
Double-Cabibbo suppressed decay $\Lambda_{\mathbf{c}}^+ \to p \, K^+ \pi^-$

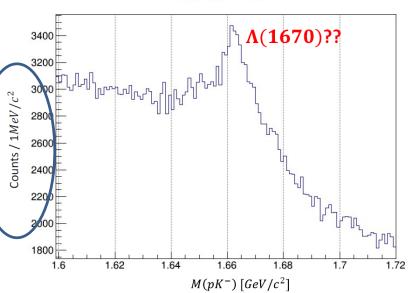
- Weak decay amplitude of a charm quark
 - c → s: $\cos\theta_c \sim 1$ d: $\sin\theta_c \sim 0.23$ ← Cabibbo suppression
 - At the same time, emitted W decays into a qqbar pair


$$u\bar{d}$$
: $\cos\theta_{c}$ $u\bar{s}$: $\sin\theta_{c}$

• So, the decay $c \to d(u\overline{s})$ is twice suppressed

- → Doubly Cabibbo-suppressed decay
- Naively, decay branch is O(tan⁴ θ_c) ~ 0.28% smaller compared to counterpart ($c \rightarrow s(\bar{d}u)$)


DCS decay $\Lambda_c^+ \to p K^+ \pi^-$



The first observation of DCS decay in Baryon

A new Λ excited states?

Dalitz plot: $\Lambda_{\rm C}^+ \rightarrow pK^-\pi^+$ [PRL117.011801]

- The peak position is ~1663 MeV, near the $\Lambda\eta$ threshold (1663.5 MeV)
- Width is ~10 MeV, significantly narrower than Λ , Σ resonances in this region
 - $-\Lambda(1670)$: 25-50 MeV
 - $-\Sigma(1660)$: 40-200 MeV
 - $-\Sigma(1670)$: 40-80 MeV
 - $-\Lambda(1690)$: ~60 MeV
- 2 independent groups claim there is a new narrow Λ^* resonance at this energy with J=3/2
 - Kamano et al. [PRC90.065204, PRC92.025205] $J^P=3/2^+$ (P_{03}), M=1671+2-8 MeV, $\Gamma=10+22-4$ MeV
 - Liu & Xie [PRC85.038201, PRC86.055202] $J^{P}=3/2^{-}(D_{03})$, M=1668.5 \pm 0.5 MeV, Γ =1.5 \pm 0.5 MeV
- The reason is the same
 - From K⁻p $\rightarrow \Lambda \eta$ measurement near the threshold by Crystal Ball collaboration at BNL [PRC64.055205]
 - Especially the angular distribution → Model independent
- There is no state in quark models
 - It must be an exotic
 - $-udss\bar{s}$ pentaquark??

Observation of Pc states at LHCb

LHCb: PRL115, 072001 (2015)

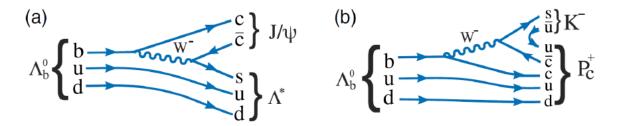
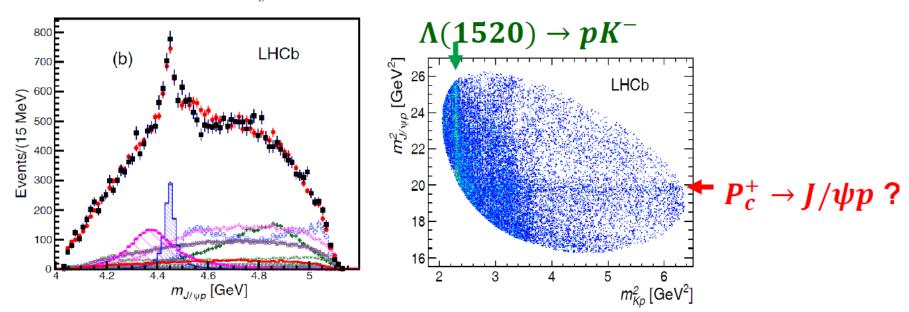
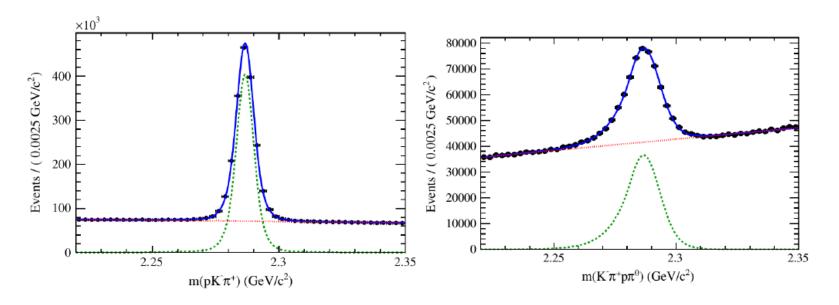



FIG. 1 (color online). Feynman diagrams for (a) $\Lambda_b^0 \to J/\psi \Lambda^*$ and (b) $\Lambda_b^0 \to P_c^+ K^-$ decay.



• Analogue search for hidden-strange pentaquark by switching

$$b \to c(\Lambda_b^0 \to \Lambda_c^+), c \to s(J/\psi \to \phi): \Lambda_c^+ \to \pi^0 P_s^+ \to \pi^0 (\phi p).$$

Reference modes

- $\Lambda_c^+ \to \phi p \pi^0$ is Cabibbo-suppressed decay.
- $\Lambda_c^+ \to p K^- \pi^+$ is used for reference, and the Cabibbo-favored decay $\Lambda_c^+ \to K^- \pi^+ p \pi^0$ is measured.

- $\frac{\mathcal{B}(\Lambda_c^+ \to K^- \pi^+ \rho \pi^0)}{\mathcal{B}(\Lambda_c^+ \to K^- \pi^+ \rho)} = (0.685 \pm 0.007 \pm 0.018)$
- Most precise measurement: $\mathcal{B}(\Lambda_c^+ \to K^- \pi^+ p \pi^0) = (4.42 \pm 0.05 \pm 0.12 \pm 0.16)\%$
- ullet Previous measurement from BESIII: $(4.53 \pm 0.23 \pm 0.30)\%$

Search for Ps states at Belle

Phys.Rev.D96, 051102(R)(2017)

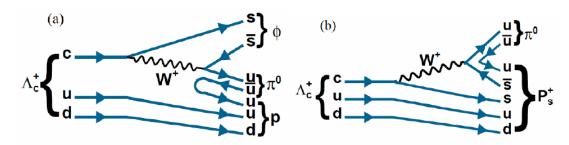
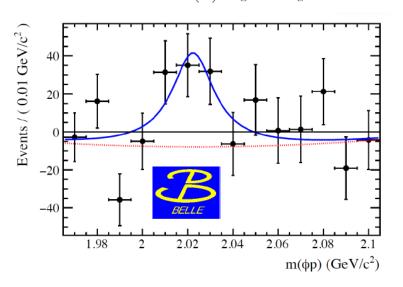
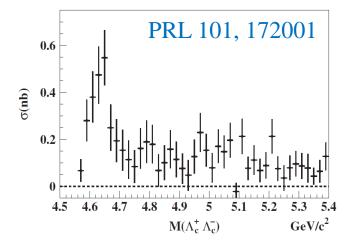
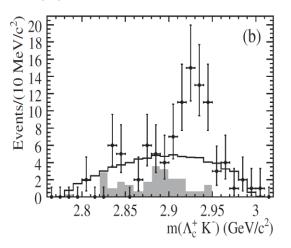



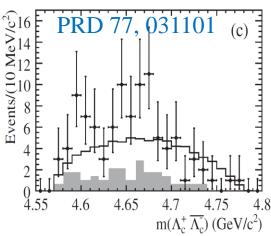
FIG. 1. Feynman diagram for the decay (a) $\Lambda_c^+ \to \phi p \pi^0$ and (b) $\Lambda_c^+ \to P_s^+ \pi^0$.

Perform 2D fit to $M_{K^+K^-p\pi^0}$ vs $M_{K^+K^-}$ plane. $\Sigma^+ \rightarrow p\pi^0$ vetoed

- No significant Ps signal
- Best fit yields a peak at M=(2025 \pm 5) MeV/c² and Γ =(22 \pm 12) MeV


PRD96, 051102(R) (2017); 915fb⁻¹


Number of candidate $\Lambda_c \rightarrow P_s \pi^0 \rightarrow \phi p \pi^0$ events: 77.6±28.1

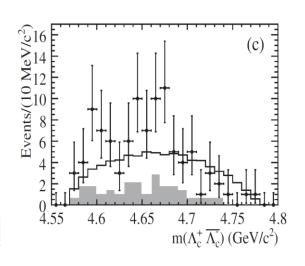

 $B(\Lambda_c \to P_s \pi^0) \times B(P_s \to \phi p) < 8.3 \times 10^{-5} @90\% C.L.$

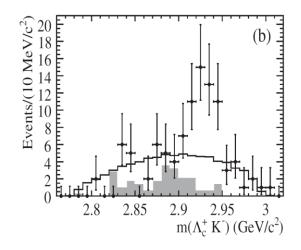
$\Xi_c(2930)^0 \quad \text{in} \quad B^+ \to K^+ \Lambda_c^+ \overline{\Lambda}_c^-$

- Belle reported a structure, called X(4630), in the $\Lambda_c^+ \overline{\Lambda}_c^-$ invariant mass distribution in $e^+e^- \to \gamma_{ISR} \Lambda_c^+ \overline{\Lambda}_c^-$ PRL 101, 172001
- BarBar once studied $B^+ \to K^+ \Lambda_c^+ \overline{\Lambda}_c^-$ and found two small peaks in $M_{\Lambda_c^+ \overline{\Lambda}_c^-}$ spectrum and a vague structure named $\Xi_c(2930)$ is seen in the distribution of $M_{K\Lambda_c}$. Larger data is needed to verify them. PRD 77, 031101
- Also, some theory explained that Y(4660) has a large partial decay width to $\Lambda_c^+ \overline{\Lambda}_c^-$ and it's isospin partner Y(4616) is predicted. PRD 82, 094008; PRL102, 242004

$\Xi_c(2930)^0$ in $B^+ \to K^+ \Lambda_c^+ \overline{\Lambda}_c^-$

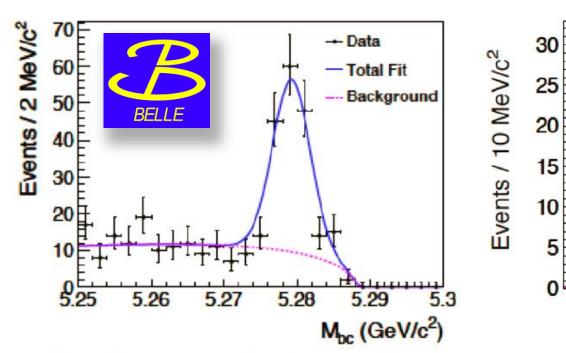
$\mathcal{\Xi}_c(2930)$

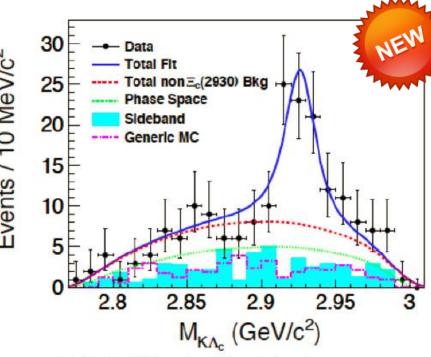

CHARMED BARYONS


$$\begin{array}{l} \textit{(C=+1)} \\ \textit{Λ_c^+ = udc , Σ_c^{++} = uuc , Σ_c^{+} = udc , Σ_c^{0} = ddc , Ξ_c^{+} = usc , Ξ_c^{0} = dsc , Ω_c^{0} = ssc } \\ \textit{Ξ_c} \Big(2930 \Big) & \textit{$I(J^P)$ = ?(??)} \end{array}$$

A peak seen in the $\varLambda_c^+K^-$ mass projection of $B^-\to \varLambda_c^+\overline{\varLambda}_c^-K^-$ events.

$arXeta_c(2930)$ MASS	2931 ± 6 MeV
$arphi_c(2930)$ WIDTH	$36\pm13 ext{MeV}$

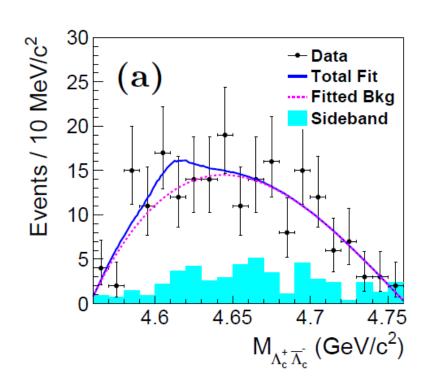

tion for experimental resolution, we obtain $m = 2931 \pm 3(\text{stat}) \pm 5(\text{syst}) \text{ MeV}/c^2$ and $\Gamma = 36 \pm 7(\text{stat}) \pm 11(\text{syst}) \text{ MeV}$. We do not see any such structure in the m_{ES} sideband region. This description is in good agreement with the data (χ^2 probability of 22%) and could be interpreted as a single Ξ_c^0 resonance with those parameters, though a more complicated explanation (e.g. two narrow resonances in close proximity) cannot be excluded.

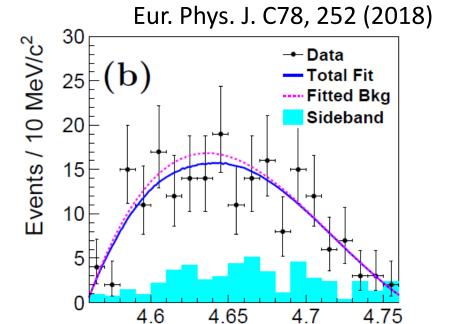


Observation of $\mathcal{E}_c(2930)^0$ in $B^+ \to K^+ \Lambda_c^+ \overline{\Lambda}_c^-$ at Belle

Eur. Phys. J. C78, 252 (2018)

153±14 B decay signal events. Br(B+ $\rightarrow\Lambda_c$ + Λ_c -K+) =(4.80±0.43±0.68)×10-4


 Ξ_c (2930)⁰ \rightarrow Λ_c +K- 61±16 events 5.1σ significance


Clear confirmation for the BaBar claim, PRD77,031101(2008) and much more precise M=2928.9±3.0 +0.8/-12.0 MeV, Γ =19.5±8.4 +5.4/-7.9 MeV

• $\Xi_c(2930)^0 = csd$ is the first charmed-strange baryon established in B decay.

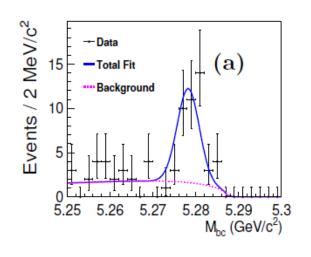
Search for Y(4660) and its spin part in $B^+ \to K^+ \Lambda_c^+ \overline{\Lambda}_c^-$ at Belle

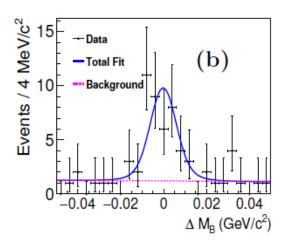
 $M_{\Lambda_{c}^{+}\overline{\Lambda_{c}}}$ (GeV/c²)

- No Y(4660) and its spin partner Y_{η} were observed. in the $\Lambda_c^+ \overline{\Lambda}_c^-$ invariant mass distribution
- 90% C.L. upper limits of $B^+ \to K^+ Y(4660) \to K^+ \Lambda_c^+ \overline{\Lambda}_c^-$ and $B^+ \to K^+ Y_\eta \to K^+ \Lambda_c^+ \overline{\Lambda}_c^-$ are 1.2×10^{-4} and 2.0×10^{-4} .

Evidence of charged $\mathcal{Z}_c(2930)$ in $B^0 \to K^0 \Lambda_c^+ \overline{\Lambda}_c^-$

arXiv:1806.09182

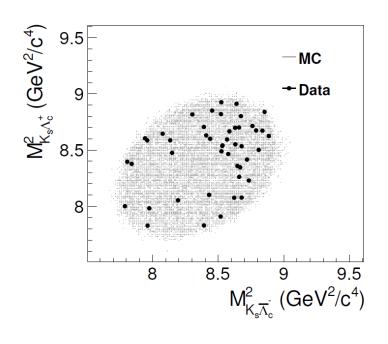

• Based on full $\Upsilon(4S)$ data set (772 M BB pairs) at Belle

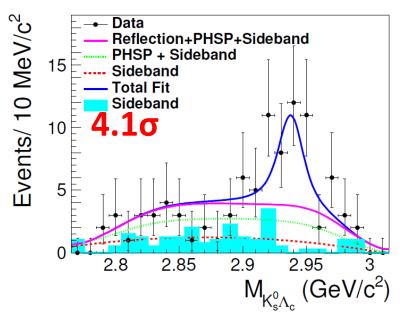


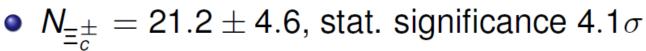

• Three Λ_c decay channels:

$$\Lambda_c^+ \to p K^- \pi^+$$
, $\Lambda_c^+ \to p K_S(\pi^+ \pi^-)$ and $\Lambda_c^+ \to \Lambda(p \pi^-) \pi^+$.

ullet B candidates extracted via 2D fit to M_{bc} and ΔM_{B}




- Quite clear $\Lambda_c^+ \bar{\Lambda}_c^-$ signals and B^0 signals.
 - $N^{
 m sig}=34.9\pm6.6$ with a statistical signal significance above 8.3σ
 - $\mathcal{B}(B^0 \to K^0 \Lambda_c^+ \bar{\Lambda}_c^-) = (3.84 \pm 0.73 \pm 0.48) \times 10^{-4}$


Evidence of charged $\mathcal{E}_c(2930)$ in $B^0 \to K^0 \Lambda_c^+ \overline{\Lambda}_c^-$

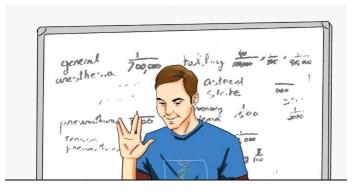
ullet Charged ${oldsymbol{\mathcal{Z}}}_c({f 2930})$ extracted by fitting $M_{K^0_S\Lambda_c}$

•
$$M_{\Xi_c^{\pm}(2930)} = 2942.3 \pm 4.4 \pm 1.6 \text{ MeV}/c^2$$

$$\Gamma_{\equiv c (2930)} = 14.8 \pm 8.8 \pm 7.1 \text{ MeV}$$

Measurements of absolute Brs of Ξ_c^0

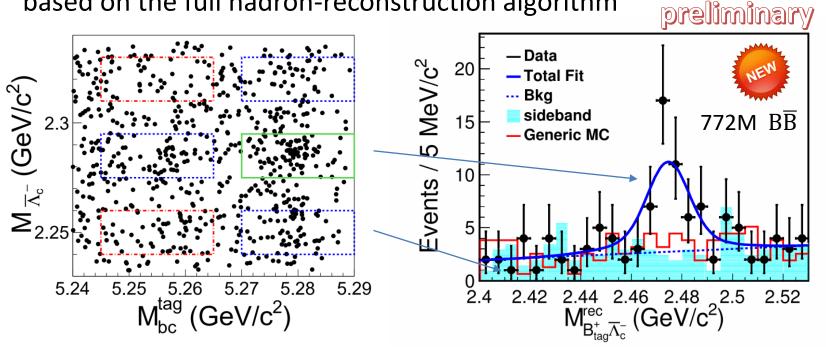
- Weak decays of charmed hadrons play an unique role in the study of strong interaction; the charmed-baryon sector also offers an unique and excellent laboratory for testing heavy-quark symmetry and lightquark chiral symmetry.
- For the charmed baryons of the SU(3) anti-triplet, only Λ_c absolute Brs were measured by Belle [PRL113,042002(2014), first time] and BESIII [PRL116,052001(2016)]
- Since $\mathbf{\Xi}_{c}^{0}$ [PRL62,863(1989)] and $\mathbf{\Xi}_{c}^{+}$ [PLB122,455 (1983)] were discovered ~30 years ago, no absolute Brs could be measured.
- For $\mathbf{\Xi}_{\mathbf{c}}^{0}$, the Brs are all measured with ratios to the $\mathbf{\Xi}^{-}\pi^{+}$, the so called reference mode.


Measurements of absolute Brs of Ξ_c^0

- Theory: $B(\Xi_c^0 \to \Xi^- \pi^+)^{\sim} 1.3\%$ [PRD48, 4188 (1993)], $(2.24 \pm 0.34)\%$ [JHEP03, 66(2018)].
- The $B(\Xi_c^0 \to \Lambda K^- \pi^+)/B(\Xi_c^0 \to \Xi^- \pi^+) = 1.07 \pm 0.12 \pm 0.07$ and $B(\Xi_c^0 \to p K^- K^- \pi^+)/B(\Xi_c^0 \to \Xi^- \pi^+) = 0.33 \pm 0.03 \pm 0.03$ [PLB 605,237]
- $\Xi_c^0 \to p K^- K^- \pi^+$ plays a fundamental role in lots of bottom baryons study at LHCb .
- How to measure Ξ_c^0 absolute Brs? Model Independent!

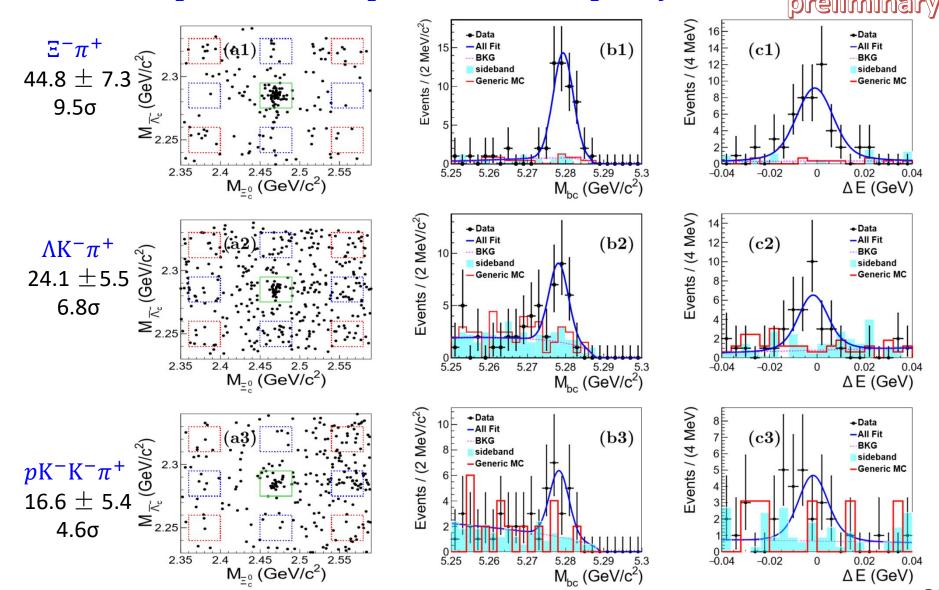
$$\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+) \equiv \frac{\mathcal{B}(B^- \to \bar{\Lambda}_c^- \Xi_c^0) \mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)}{\mathcal{B}(B^- \to \bar{\Lambda}_c^- \Xi_c^0)},$$

$$\mathcal{B}(\Xi_c^0 \to \Lambda K^- \pi^+) \equiv \frac{\mathcal{B}(B^- \to \bar{\Lambda}_c^- \Xi_c^0) \mathcal{B}(\Xi_c^0 \to \Lambda K^- \pi^+)}{\mathcal{B}(B^- \to \bar{\Lambda}_c^- \Xi_c^0)}.$$


$$\mathcal{B}(\Xi_c^0 \to p K^- K^- \pi^+) \equiv \frac{\mathcal{B}(B^- \to \bar{\Lambda}_c^- \Xi_c^0) \mathcal{B}(\Xi_c^0 \to p K^- K^- \pi^+)}{\mathcal{B}(B^- \to \bar{\Lambda}_c^- \Xi_c^0)}.$$

- For inclusive $B^- \to \overline{\Lambda}_c^- \Xi_c^0$, $\Xi_c^0 \to \text{anything}$, never measured before.
- For exclusive $B(B^- \to \overline{\Lambda}_c^- \Xi_c^0) B(\Xi_c^0 \to \Xi^- \pi^+)$; $B(B^- \to \overline{\Lambda}_c^- \Xi_c^0)$ $B(\Xi_c^0 \to \Lambda K^- \pi^+)$, measured by Belle and BaBar with large errors.

Measurements of Br of $B^- \to \overline{\Lambda}_c^- \Xi_c^0$, $\Xi_c^0 \to \text{anything}$


- The $\overline{\Lambda}_{c}^{-}$ reconstructed via its $\overline{p}K^{+}\pi^{-}$ and $\overline{p}K_{s}^{0}$ decays
- A tagged B meson candidate, B_{tag}^+ , is reconstructed using a neural network based on the full hadron-reconstruction algorithm

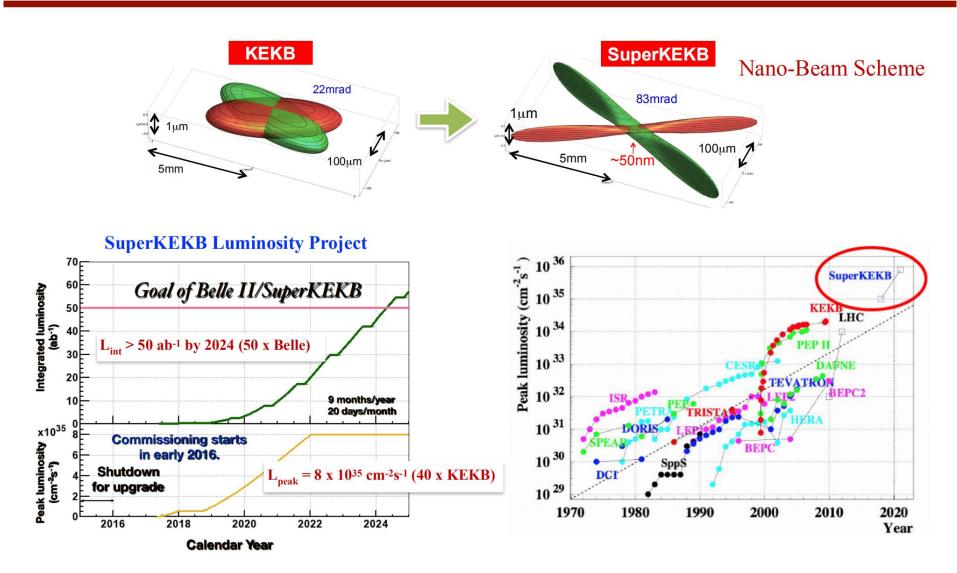
- An unbinned maximum likelihood fit: $N(\Xi_c^0)=40.9 \pm 9.0$, 5.5 $\sigma(\text{stat.})$
- B($B^- o \overline{\Lambda}_c^- \Xi_c^0$, $\Xi_c^0 o$ anything)= $(9.51 \pm 2.10 \pm 0.88) \times 10^{-4}$ for the first time

Measurements of Brs of $B^- \to \overline{\Lambda}_c^- \Xi_c^0$, with

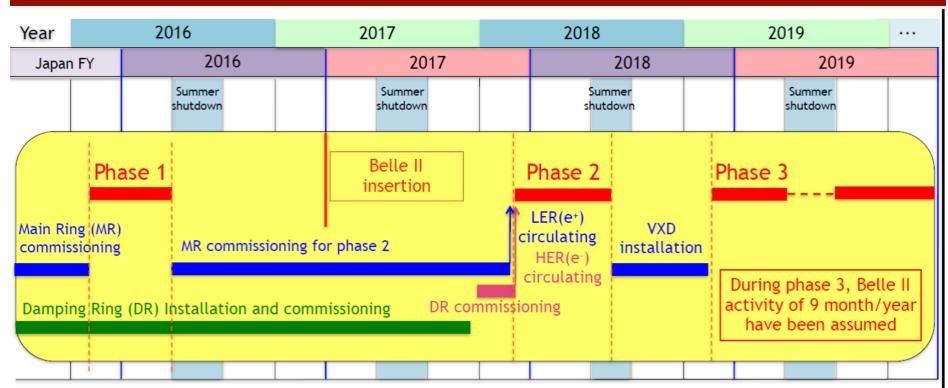
 $\mathbf{\Xi}_{\mathrm{c}}^{0} \to \mathbf{\Xi}^{-}\pi^{+}; \mathbf{\Xi}_{\mathrm{c}}^{0} \to \Lambda \mathrm{K}^{-}\pi^{+}; \mathbf{\Xi}_{\mathrm{c}}^{0} \to p \mathrm{K}^{-}\mathrm{K}^{-}\pi^{+}$ preliminary

ΔE (GeV)

Measurements of absolute Brs of Ξ_c^0

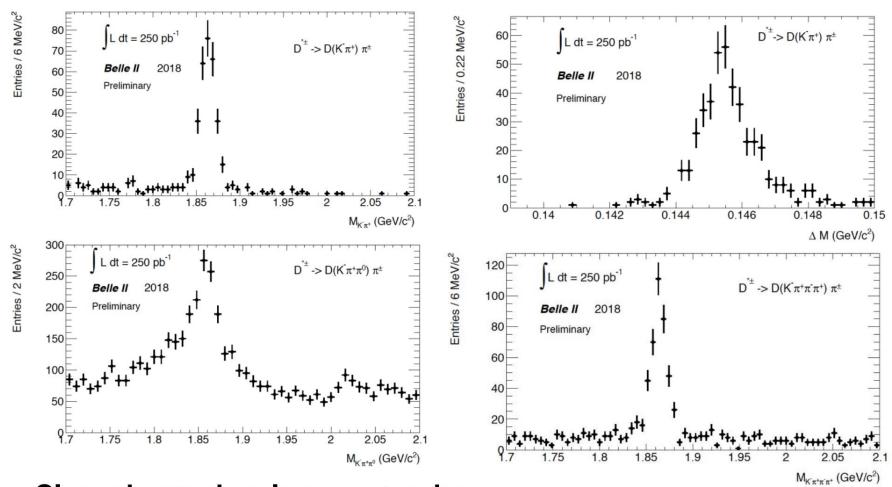

Summary of the measured branching fractions and the ratios of Ξ_c^0 decays

Channel	Br/Ratio	preliminary
$B(B^- o \overline{\Lambda}_c^- \Xi_c^0)$	$(9.51\pm2.10\pm0.88)\times10^{-4}$	
$B(B^- \to \overline{\Lambda}_c^- \Xi_c^0) B(\Xi_c^0 \to \Xi^- \pi^+)$	$(1.71\pm0.28\pm0.15)\times10^{-5}$	$(2.4\pm0.9)\times10^{-5}$
$B(\mathbf{B}^- \to \overline{\Lambda}_c^- \Xi_c^0) B(\Xi_c^0 \to \Lambda \mathrm{K}^- \pi^+)$	$(1.11\pm0.26\pm0.10)\times10^{-5}$	$(2.1\pm0.9)\times10^{-5}$
$B(\mathbf{B}^- \to \overline{\Lambda}_c^- \Xi_c^0) B(\Xi_c^0 \to \mathrm{pK}^- \mathrm{K}^- \pi^+)$	$(5.47\pm1.78\pm0.57)\times10^{-6}$	†
$B(\Xi_{\rm c}^0 \to \Xi^- \pi^+)$	$(1.80\pm0.50\pm0.14)\%$	
$B(\Xi_{\rm c}^0 \to \Lambda {\rm K}^- \pi^+)$	$(1.17\pm0.37\pm0.09)\%$	PDG
$B(\Xi_{\rm c}^0 \to {\rm pK^-K^-}\pi^+)$	$(0.58\pm0.23\pm0.05)\%$. ↓
$B(\Xi_{\rm c}^0 \to \Lambda {\rm K}^-\pi^+)/B(\Xi_{\rm c}^0 \to \Xi^-\pi^+)$	$0.65 \pm 0.18 \pm 0.04$	1.07 ± 0.14
$B(\Xi_{\rm c}^0 \to {\rm pK^-K^-}\pi^+)/B(\Xi_{\rm c}^0 \to \Xi^-\pi^+)$	$0.32 \pm 0.12 \pm 0.07$	0.34 ± 0.04


- We have performed an analysis of $B^- o \overline{\Lambda}_c^- \Xi_c^0$ inclusively and exclusively
- First model-independent measurement of absolute Brs of Ξ_c^0 decays
- The branching fraction $B(B^- \to \overline{\Lambda}_c^- \Xi_c^0)$ is measured for the first time
- The measured $B(\Xi_c^0 \to \Xi^- \pi^+)$ can be used to determine the BR of other Ξ_c^0 decays.

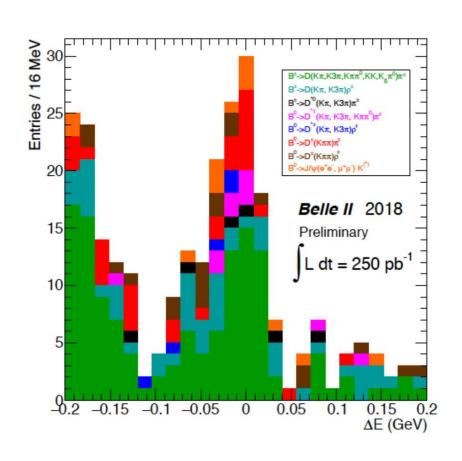
27

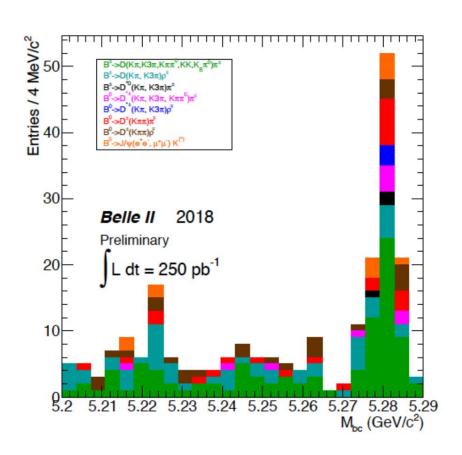
SuperKEKB



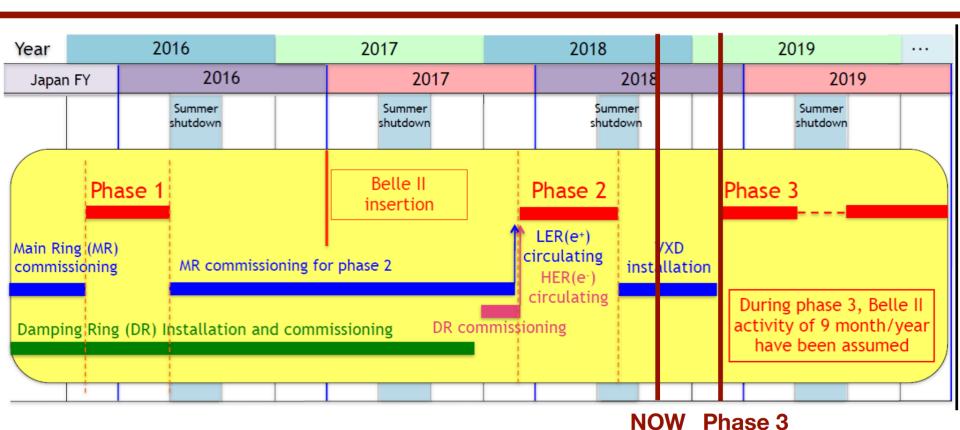
SuperKEKB and Belle II Schedule

- Phase1, Feb.-June, 2016
 - Accelerator commissioning, no collision
- Phase2, Feb.-July 17, 2018
 - Collision w/o vertex detectors
 - Understand background and detector performance
 - Instantaneous luminosity reach ~0.5x10³⁴ cm⁻²s⁻¹
 - ~0.5 fb⁻¹ data at the Y(4S) resonance was collected


Belle II Performance



Clear charm signals e+e- → ccbar Belle II detector is working well!


Belle II Performance

We are seeing B signals!

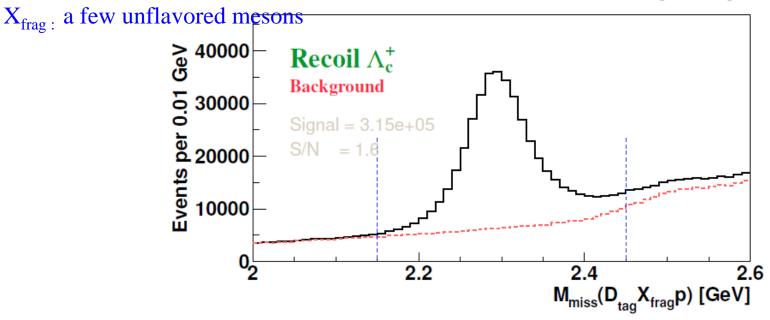
Belle II in future

Phase 3

- Installation of VXD
- Start physics run with full detectors in Spring 2019
- Operate 9 months per year

Belle II possibilities

- Many things, but some of them can be done in Belle, too
 - We have not used the full potential of Belle data
- Examples include:
 - Search for more Y_c resonances in unsearched modes; e.g., $\Lambda_c \eta$
 - J^P measurements for Λ_c^* , Ξ_c^* , Ω_c^* ...; Partial wave analysis.
 - → We can determine J^P of most of presently known states
 - → Comprehensive list of charmed baryons
 - Search for $\Xi *$ and $\Omega *$ resonances in the decay of Λ_c and Ξ_c .
 - Weak decay branches and decay asymmetry parameters
 - Exotic search: pentaquarks, dibaryons, ... e.g., ND, $N\overline{D}$ (or Θ_c), H, H_c, $\Lambda_c N$, ...


.

Inclusive $\Lambda_c^+ \rightarrow X$

$$e^+e^- \rightarrow D_{\text{tag}} X_{\text{frag}} p \Lambda_c^+$$

MC Simulation [5.5 ab⁻¹]

→ Belle II yield in 50 ab-1: 2.8 x 106 inclusive

Unique sample:

- allows measurement of Λ_c absolute branching fractions
- allows measurement of semileptonic Λ_c decays
- ullet allows searches for Λ_c rare decays with missing energy

Summary

- Belle data taking is over, but still actively publishing results.
 Many interesting results are from (charmed)baryon spectroscopy.
 - --Observation of an excited Ω^- baryon: $\Omega^*(2012)$
 - -- First observation of doubly Cabibbo-suppressed decay in $\Lambda_c^+ \to p \ K^+ \pi^-$
 - -- First observation of $\mathcal{E}_c^0(2930)$ and evidence of $\mathcal{E}_c^{+-}(2930)$ in B decays
 - -- Search for Ps in $\Lambda_c^+ \to p\phi\pi^0$ decay
 - -- Measurements of absolute Brs of \mathcal{Z}_c^0
- Interesting results are expected at Belle II, where 50 times more statistics than Belle.
 - --Spin-parity determination of most (charmed)baryons and hyperons.
 - --Search for new (charmed)baryon/hyperon resonances
 - -- And more ...

