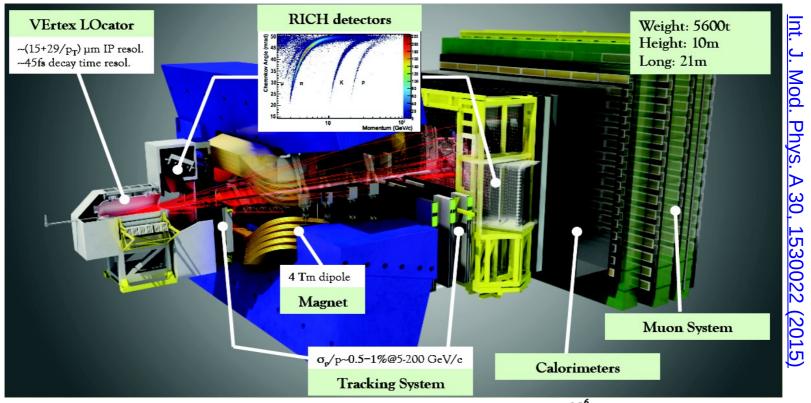


Charm CPV and Rare Decays at LHCb

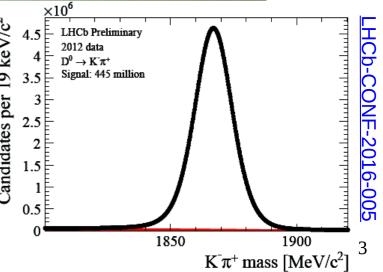
Liang Sun (for the LHCb collaboration)
Wuhan University

2018/10/26, Zhengzhou

Outline

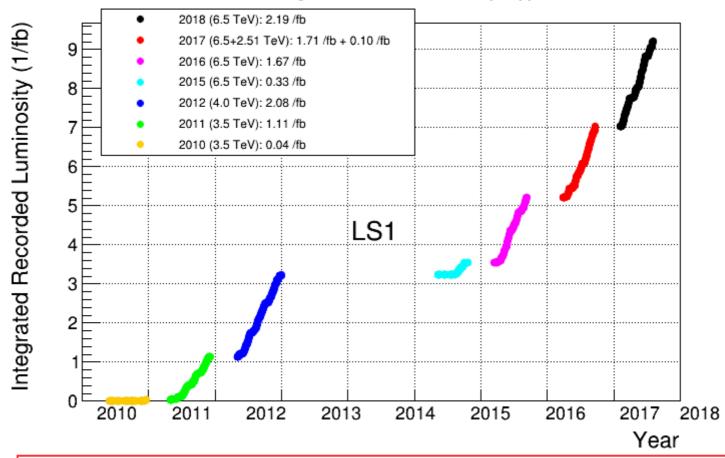

Recent LHCb results:

For a complete paper list on charm, see LHCb link


- $-A_{\Gamma}$ in D⁰ \to K+K- and D⁰ \to π + π -[PRL 118 (2017) 261803]
- $-y_{CP}$ with D⁰→K+K-, D⁰→π+π-, and D⁰→K-π+ [arXiv:1810.06874]</sup>
- Mixing and CP violation in $D^0 \rightarrow K^{\pm}\pi^{\mp}$ [PRD 97 (2018) 031101(R)]
- $-A_{CP}$ in D₀ \rightarrow K_S⁰K_S⁰ with 2015-2016 data (2fb⁻¹) [arXiv:1806.01642]
- Angular and *CP* asymmetries in $D^0 \rightarrow K^+K^-(\pi^+\pi^-) \mu^+\mu^-$
- Search for $\Lambda_c^+ \rightarrow p\mu^-\mu^+$ [PRD 97 (2018) 091101(R)]

Summary & outlook

LHCb experiment



- LHCb acceptance: $2 < \eta < 5$ (forward region)
- Large cc production cross-section $-\sigma(pp \rightarrow c\bar{c}) = (2369 \pm 3 \pm 152 \pm 118) \mu b @ 13 TeV$
- About ~790M $D^0 \rightarrow K^-\pi^+$ collected by LHCb between 2011 and 2016

LHCb data-taking

LHCb Cumulative Integrated Recorded Luminosity in pp, 2010-2018

- Run I: 1.0 fb⁻¹ @ 7 TeV (2011) + 2.0 fb⁻¹ @ 8 TeV (2012)
- Run II: 0.3 fb⁻¹ (2015) + 1.7 fb⁻¹ (2016) + 1.7 fb⁻¹ (2017) + 2.2 fb⁻¹ (2018) @ 13 TeV

CP Violation in Charm

 Only way to probe CP violation in up-type quark

- Complementary to K and B mesons with observed CPV
- Difficult to calculate SM
 predictions, but small (~10⁻³) CP
 asymmetry is expected → hints of
 NP if higher values are observed
- CPV in charm sector yet to be found

Unitarity triangle for charm

$$V_{ud}V_{cd}^* + V_{us}V_{cs}^* + V_{ub}V_{cb}^* = 0$$

$$\sim \lambda \qquad \sim \lambda \qquad \sim \lambda^5$$

$$\lambda = \sin(\theta_C) \sim 0.23$$

Expected CPV very small in charm

- Effectively 2-generation system
- 3rd generation and CPV enter through loops

Mixing and CPV in D⁰ – D⁰

- Charm mixing: a well-established fact:
 - Mass eigenstates are related to their flavor eigenstates via $|D_{1,2}\rangle \equiv p|D^0\rangle \pm q|D^0\rangle$, with $|q|^2 + |p|^2 \equiv 1$
 - Mixing parameters based on the mass and width differences: $x \equiv (m_2 m_1)/\Gamma$, $y \equiv (\Gamma_2 \Gamma_1)/2\Gamma$, with $\Gamma \equiv (\Gamma_2 + \Gamma_1)/2$
- *CP* violation contributions:
 - In decays: amplitudes for a process and its conjugate differ

Direct *CP* violation
$$\left| \frac{\overline{A}_f}{A_f} \right|^{\pm 2} \approx 1 \pm A_d \implies a_{CP}^{dir} \approx -\frac{1}{2} A_d$$

- In mixing: rates of $D^0 \rightarrow \overline{D}{}^0$ and $\overline{D}{}^0 \rightarrow D^0$ differ

Indirect
$$CP$$
 violation $\left| \frac{q}{p} \right|^{\pm 2} \approx 1 \pm A_m \implies a_{CP}^{ind} = -\frac{A_m}{2} y \cos \phi + x \sin \phi$ ϕ : weak phase, A_m : CPV from mixing

- In interference between mixing and decay diagrams

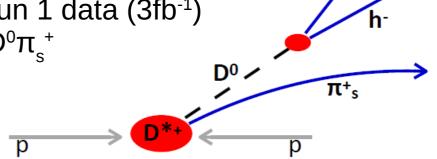
d, s, b

 \overline{D}^0 W

Search for CPV: measuring A_r

• Measure of indirect CPV in D^o SCS decays to *CP* eigenstates:

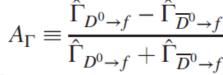
$$A_{\mathrm{CP}}(t) = \frac{\Gamma(D^0 \to f) - \Gamma(\bar{D}^0 \to f)}{\Gamma(D^0 \to f) + \Gamma(\bar{D}^0 \to f)} \approx A_{\mathrm{CP}}^{\mathrm{dir}} - A_{\Gamma}\bigg(\frac{t}{\tau}\bigg), \qquad f = K^+K^-, \, \pi^+\pi^-$$

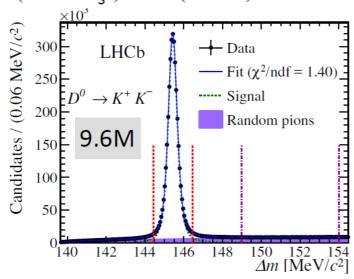

$$A_{\Gamma} = \frac{1}{2} \left[\left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) y \cos \phi + \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) x \sin \phi \right] \approx y \left(\left| \frac{q}{p} \right| - 1 \right) - x \phi$$

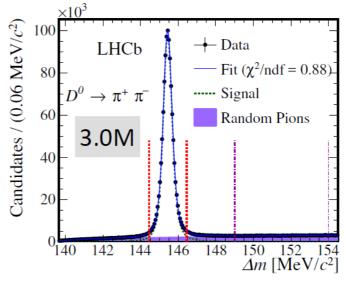
• If A_r ≠ 0 → indirect CPV

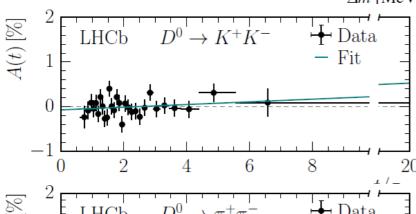
with $\phi = \arg\left(-\frac{q}{p}\frac{A_f}{A_f}\right)$

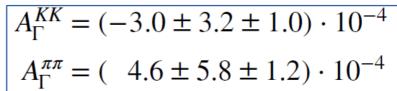
• At LHCb: measurement performed with Run 1 data (3fb-1)


• D^0 flavor tagged from strong decay $D^{*+} \rightarrow D^0 \pi_s^{+}$




[PRL 118, 261803 (2017)]

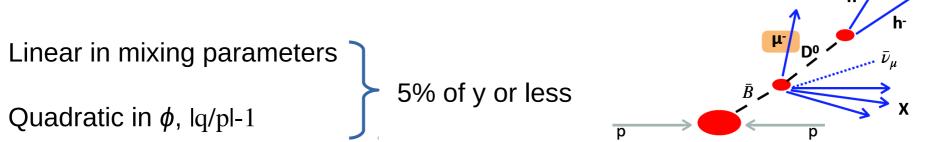

A_r results


$$\Delta m = m(h^+h^-\pi_s^{\pm}) - m(h^+h^-)$$

 t/τ_D

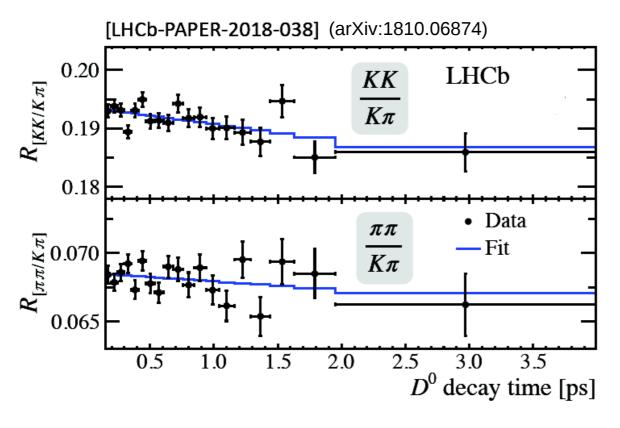
Combination with the smaller independent sample $\overline{B} \rightarrow D^0 \mu X$ [JHEP 04 (2015) 043]:

$$A_{\Gamma} = (-2.9 \pm 2.8) \cdot 10^{-4}$$


- Dominating world average
- Compatible with zero within 3x10⁻⁴

Search for CPV: measuring y_{CP}

$$y_{\text{CP}} = \frac{\hat{\Gamma}(D^0 \to h^+ h^-) + \hat{\Gamma}(\bar{D}^0 \to h^+ h^-)}{2\Gamma} - 1 \qquad f = K^+ K^-, \ \pi^+ \pi^- \text{ (CP-even)}$$


$$= \frac{1}{2} \left[\left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) y \cos \phi - \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) x \sin \phi \right] \approx y + y \left[\frac{1}{2} \left(\left| \frac{q}{p} \right| - 1 \right)^2 - \frac{\phi^2}{2} \right] - x \phi \left(\left| \frac{q}{p} \right| - 1 \right)$$

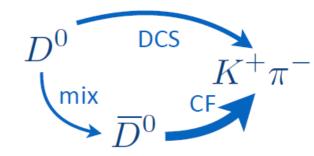
- y_{CP} is equal to y in the limit of no CPV (|q/p| = 1 and $\phi = 0$)
- Differences are:

- Current precision not as competitive as A_{Γ} for CPV searches
- It is a measurement of y independent of R(t) = Br(D $^{0} \rightarrow K^{+}\pi^{-}$)/Br(D $^{0} \rightarrow K^{-}\pi^{+}$)
- At LHCb: measurement performed with Run 1 data (3 fb-1) tagged with $\overline{B} \rightarrow D^0 \mu X$
- Extract y_{CP} from the time-dependent ratio between h+h- and K- π + yields

y_{CP} result

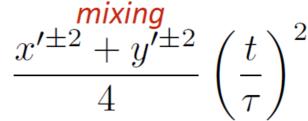
$$y_{\text{CP}}^{KK} = (0.63 \pm 0.15 \pm 0.11) \%$$

$$y_{\text{CP}}^{\pi\pi} = (0.38 \pm 0.28 \pm 0.15) \%$$

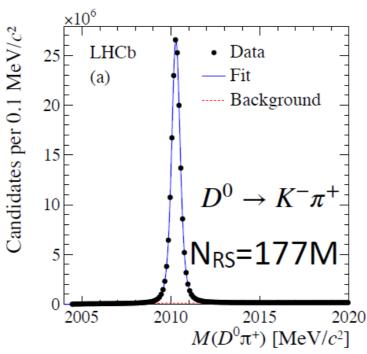

$$y_{\text{CP}} = (0.57 \pm 0.13 \pm 0.09) \%$$

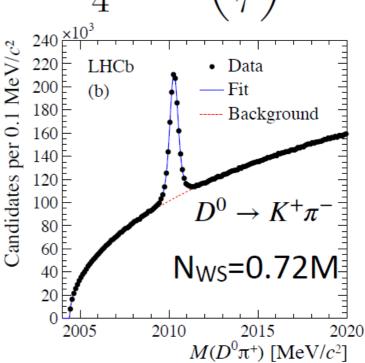
- Compatible and with similar precision of world average $(0.835 \pm 0.155)\%$
- Compatible with $y = (0.67^{+0.06}_{-0.13})\%$ within 1σ

[HFAG CHARM18]

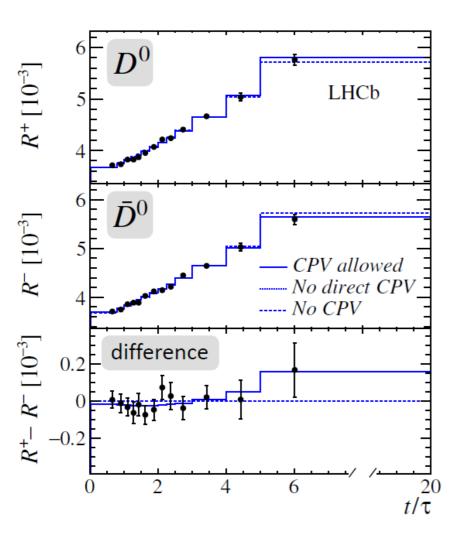

Search for CPV: the $D^0 \rightarrow K^+\pi^-$ case

- Mixing parameters measured separately for D° and $\overline{\mathsf{D}}{}^{\scriptscriptstyle{0}}$ decays
- Any different oscillation pattern between D^0 and $\overline{D}{}^0$ decays indicates CPV

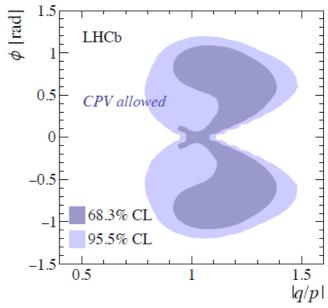



$$R^{\pm}(t) = \frac{N_{WS}^{\pm}(t)}{N_{RS}^{\pm}(t)}$$

 $\frac{\mathrm{decay}}{\approx R_D^{\pm}} + \sqrt{R_D^{\pm}} y'^{\pm} \frac{t}{\tau} +$



- 2011-2016: 5/fb
- Production mode:
 D*+ → D⁰π_s+
- Requirement on $K\pi$ invariant mass
- Ratios measured in intervals of decay time



Mixing & CPV results in $D^0 \rightarrow K^+\pi^-$

No evidence for CPV

• If no CPV is assumed:

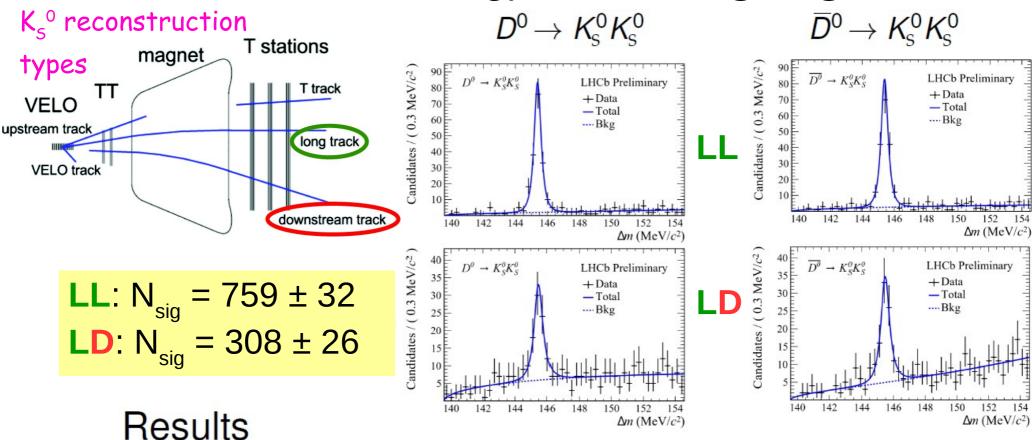
$$x^{2} = (0.039 \pm 0.023 \pm 0.014) \cdot 10^{-3}$$
$$y' = (5.28 \pm 0.45 \pm 0.27) \cdot 10^{-3}$$

Twice as precise as previous superseded LHCb measurement [PRL 111 (2013) 251801]

A_{CP} in $D^0 \rightarrow K_S^0 K_S^0$ decay

- Penguin annihilation diagrams contribute to $D^0 \rightarrow K_S{}^0K_S{}^0$
 - Hint of NP if significant time-integrated A_{CP} found
- LHCb dataset: 2.0/fb, 2015-2016

Raw asymmetry:

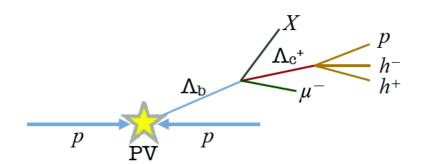

$$A_{\text{raw}}(K_{s}^{0}K_{s}^{0}) = A_{CP}(K_{s}^{0}K_{s}^{0}) + A_{P}(D^{*+}) + A_{\text{tag}}(\pi^{+})$$

 Control channel D⁰ → K⁺K⁻ to remove production & tagging asymmetries:

$$\Delta A_{CP} = A_{\text{raw}}(K_{s}^{0}K_{s}^{0}) - A_{\text{raw}}(K^{+}K^{-})$$
$$= A_{CP}(K_{s}^{0}K_{s}^{0}) - A_{CP}(K^{+}K^{-})$$

 $A_{CP}(K^+K^-) = (0.04 \pm 0.12 \pm 0.10)\%$ measured by LHCb PLB 767 (2017) 177

Result of $A_{CP}(D^0 \rightarrow K_S^0 K_S^0)$


• $A_{CP} = (4.2 \pm 3.4 \pm 1.0)\%$

[JHEP 10 (2015) 055]

- Compatible with Run 1 result: $A_{CP} = (-2.9 \pm 5.2 \pm 2.2)\%$
- Average : $A_{CP} = (2.0 \pm 2.9 \pm 1.0)\%$
- → Catching up with the Belle result [PRL 119 (2017) 171801]

ΔA_{CP} in $\Lambda_c^+ \rightarrow ph^+h^-$ decays

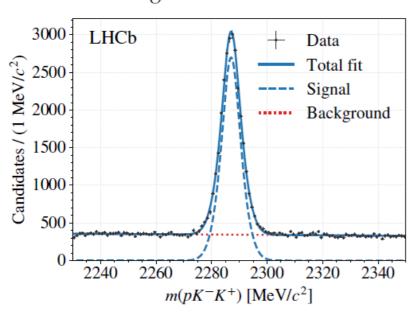
- LHCb dataset: 3.0 fb⁻¹, Run 1
- Production mode: $\Lambda_b^0 \to \Lambda_c^+ \mu^- X$
- Raw asymmetry

$$A_{\text{raw}}(f) = A_{CP}(f) + A_P(\Lambda_b^0) + A_{\text{tag}}(\mu) + A_D(f)$$

where f = pK^+K^- , $p\pi^+\pi^-$

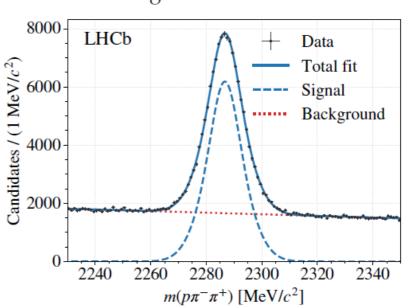
 Removing experimental asymmetries by taking the difference between the two final states

$$\Delta A_{\text{CP}}^{\text{wgt}} \equiv A_{\text{raw}}(\Lambda_c^+ \to pK^-K^+) - A_{\text{raw}}^{\text{wgt}}(\Lambda_c^+ \to p\pi^-\pi^+)$$
$$\approx A_{\text{CP}}(\Lambda_c^+ \to pK^-K^+) - A_{\text{CP}}^{\text{wgt}}(\Lambda_c^+ \to p\pi^-\pi^+)$$


Assuming same kinematics for the two final states

$\Delta A_{CP}(\Lambda_c^+ \rightarrow ph^+h^-)$ result

Yields


$$\Lambda_c^+ \to p K^- K^+$$

$$N_{\rm sig} = 25190 \pm 200$$

$$\Lambda_c^+ \to p \pi^- \pi^+$$

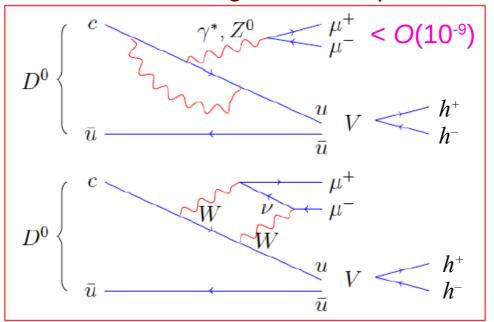
$$N_{\rm sig} = 161390 \pm 580$$

Results

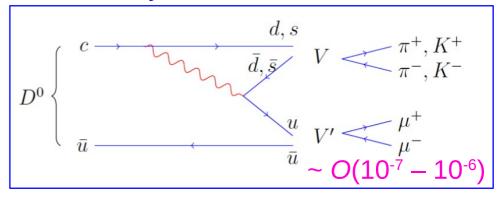
$$\Delta A_{CP}^{\text{wgt}} = (3.0 \pm 9.1 \pm 6.1) \times 10^{-3}$$

- First measurement of CPV parameters in 3-body Λ_c^+ decays
- No CPV observed

Overview of charm rare decays


 $D^0 \rightarrow \phi l^+ l^-$

[PRD 66 (2002) 014009]


- Short-distance FCNC contributions to $c \rightarrow u$ processes are tiny < 10-9
 - Only possible at the loop level
 - More suppressed than *B* decays due to GIM mechanism
 - Up-type quark FCNCs complementary to those in B and K sectors
- Branching fractions of D \rightarrow X ℓ + ℓ are dominated by resonant long-distance VMD contributions

$D^0 \rightarrow h^+h^- \mu^+\mu^-$ decays

SD contributions, good for NP probes

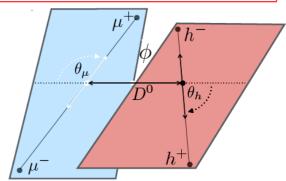
LD contributions, hard to predict theoretically

- Short-distance FCNC contributions to $c \rightarrow u$ processes are tiny < 10-9
 - Only possible at the loop level
 - More suppressed than *B* decays due to GIM mechanism
 - Up-type quark FCNCs complementary to those in B and K sectors
- Branching fractions of D \rightarrow X ℓ + ℓ are dominated by resonant long-distance VMD contributions

Asymmetries in $D^0 \rightarrow K^+K^-(\pi^+\pi^-)\mu^+\mu^-$

• Recent LHCb results[PRL 119 (2017) 191805]:

LHCb 2012 2 fb⁻¹


$$\mathcal{B}(D^0 \to \pi^+ \pi^- \mu^+ \mu^-) = (96.4 \pm 4.8(stat) \pm 5.1(sys) \pm 9.7(\mathcal{B}_{norm})) \cdot 10^{-8}$$

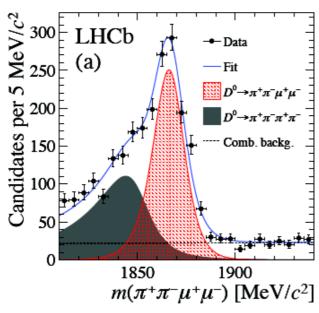
$$\mathcal{B}(D^0 \to K^+ K^- \mu^+ \mu^-) = (15.4 \pm 2.7(stat) \pm 0.9(sys) \pm 1.6(\mathcal{B}_{norm})) \cdot 10^{-8}$$

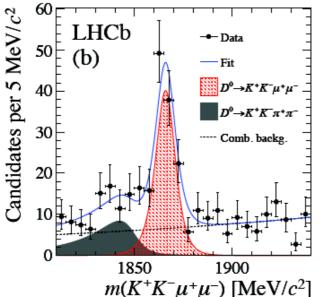
- Rarest charm decays observed so far
- Angular and CP asymmetries in SM are expected to be negligibly small

$$A_{FB} = \frac{\Gamma\left(\cos\theta_{\mu} > 0\right) - \Gamma\left(\cos\theta_{\mu} < 0\right)}{\Gamma\left(\cos\theta_{\mu} > 0\right) + \Gamma\left(\cos\theta_{\mu} < 0\right)}$$

$$A_{2\phi} = \frac{\Gamma\left(\sin 2\phi > 0\right) - \Gamma\left(\sin 2\phi < 0\right)}{\Gamma\left(\sin 2\phi > 0\right) + \Gamma\left(\sin 2\phi < 0\right)}$$

Triple product asymmetry




$$A_{CP} = \frac{\Gamma\left(D^0 \rightarrow h^+ h^- \mu^+ \mu^-\right) - \Gamma\left(\bar{D}^0 \rightarrow h^+ h^- \mu^+ \mu^-\right)}{\Gamma\left(D^0 \rightarrow h^+ h^- \mu^+ \mu^-\right) + \Gamma\left(\bar{D}^0 \rightarrow h^+ h^- \mu^+ \mu^-\right)}$$

CP asymmetry

- LHCb dataset: 5/fb, 2011-2016
- Reconstruct $D^{*+} \rightarrow D^0\pi_s^{+}$, with π_s^{+} to tag D^0 flavor

Results of asymmetries

Results integrated across $m(\mu^+\mu^-)$

$$A_{FB} \left(D^0 \to \pi^+ \pi^- \mu^+ \mu^- \right) = \left(3.3 \pm 3.7 \pm 0.6 \right) \%$$

$$A_{2\phi} \left(D^0 \to \pi^+ \pi^- \mu^+ \mu^- \right) = \left(-0.6 \pm 3.7 \pm 0.6 \right) \%$$

$$A_{CP} \left(D^0 \to \pi^+ \pi^- \mu^+ \mu^- \right) = \left(4.9 \pm 3.8 \pm 0.7 \right) \%$$

$$N_{sig}$$
: 1083 ± 41

$$A_{FB} \left(D^0 \to K^+ K^- \mu^+ \mu^- \right) = (0 \pm 11 \pm 2) \%$$

$$A_{2\phi} \left(D^0 \to K^+ K^- \mu^+ \mu^- \right) = (9 \pm 11 \pm 1) \%$$

$$A_{CP} \left(D^0 \to K^+ K^- \mu^+ \mu^- \right) = (0 \pm 11 \pm 2) \%$$

$$N_{siq}$$
: 110 ± 13

Results of asymmetries

$m(\mu^+\mu^-)$ [MeV/ c^2]	Signal asymmetries		
	A _{FB} [%]	$A_{2\phi}$ [%]	A_{CP} [%]
		$D^0 o\pi^+\pi^-\mu^+\mu^-$	
< 525	$2 \pm 20 \pm 2$	$-28 \pm 20 \pm 2$	$17 \pm 20 \pm 2$
525-565		•••	
<i>5</i> 65–780	$8.1 \pm 7.1 \pm 0.7$	$7.4 \pm 7.1 \pm 0.7$	$-12.9 \pm 7.1 \pm 0.7$
780-950	$7 \pm 10 \pm 1$	$-14\pm10\pm1$	$17\pm10\pm1$
950-1020	$3.1 \pm 6.5 \pm 0.6$	$1.2 \pm 6.4 \pm 0.5$	$7.5 \pm 6.5 \pm 0.7$
1020-1100	$0.9 \pm 5.6 \pm 0.7$	$1.4 \pm 5.5 \pm 0.6$	$9.9 \pm 5.5 \pm 0.7$
>1100		• • •	• • •
Full range	$3.3 \pm 3.7 \pm 0.6$	$-0.6 \pm 3.7 \pm 0.6$	$4.9 \pm 3.8 \pm 0.7$
		$D^0 \rightarrow K^+K^-\mu^+\mu^-$	
< 525	$13 \pm 26 \pm 4$	$9 \pm 26 \pm 3$	$-33 \pm 26 \pm 4$
525-565		• • •	
> 565	$1 \pm 12 \pm 1$	$22\pm12\pm1$	$13\pm12\pm1$
Full range	$0\pm11\pm2$	$9\pm11\pm1$	$0\pm11\pm2$

Results integrated across $m(\mu^+\mu^-)$

$$A_{FB} \left(D^{0} \to \pi^{+} \pi^{-} \mu^{+} \mu^{-} \right) = \left(3.3 \pm 3.7 \pm 0.6 \right) \%$$

$$A_{2\phi} \left(D^{0} \to \pi^{+} \pi^{-} \mu^{+} \mu^{-} \right) = \left(-0.6 \pm 3.7 \pm 0.6 \right) \%$$

$$A_{CP} \left(D^{0} \to \pi^{+} \pi^{-} \mu^{+} \mu^{-} \right) = \left(4.9 \pm 3.8 \pm 0.7 \right) \%$$

$$A_{FB} \left(D^{0} \to K^{+} K^{-} \mu^{+} \mu^{-} \right) = \left(0 \pm 11 \pm 2 \right) \%$$

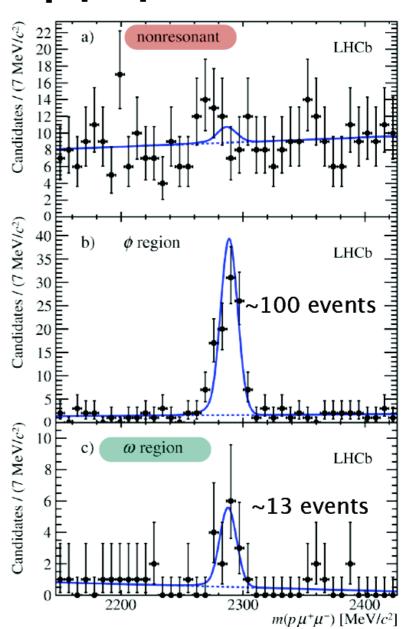
$$A_{2\phi} \left(D^{0} \to K^{+} K^{-} \mu^{+} \mu^{-} \right) = \left(9 \pm 11 \pm 1 \right) \%$$

$$A_{CP} \left(D^{0} \to K^{+} K^{-} \mu^{+} \mu^{-} \right) = \left(0 \pm 11 \pm 2 \right) \%$$

- All measured asymmetries are compatible with zero
- No observed dependency on dimuon mass

Search for $\Lambda_c^+ \to p \mu^+ \mu^-$

- LHCb dataset: 3/fb Run1 data using $\Lambda_c^+ \to p\phi(\to \mu^+\mu^-)$ as reference mode
- Upper limit on non-resonant component:


$$B(\Lambda_c^+ \to p \mu^+ \mu^-) < 9.6 \times 10^{-8} \text{ at } 95\% \text{ CL}$$

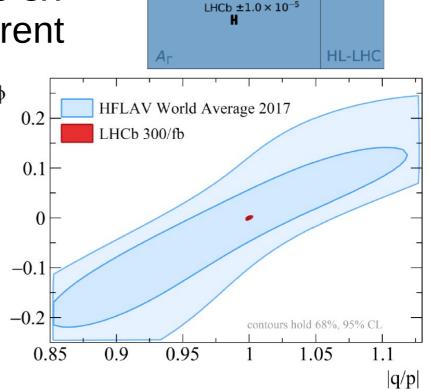
10³x better than BaBar for the integrated $m(\mu^+\mu^-)$ [PRD 84 (2011) 072006]

• First observation of $\Lambda_{c^+} \rightarrow p\omega(\rightarrow \mu^+\mu^-)$:

$$B(\Lambda_c^+ \to p\omega) = (9.4 \pm 3.2 \pm 1.0 \pm 2.0) \times 10^{-4}$$

Uncertainties are: statistical, systematic and due to the BF of the normalization mode.

LHCb Run2 and Beyond


• Many more Run2 analysis are ongoing, and we are approaching 10-4 precision on A_{Γ}

 Upgrade (2020-2023) will provide 3x larger dataset, very similar to current experiment

 Analysis strategies will follow what's done in LHCb

 Upgrade (2025-) will be for HL-LHC to collect 300/fb

Ambitious but extremely rewarding

LHCb

LS₂

LS3

23

LHCb $\pm 1.3 \times 10^{-4}$

Belle II $\pm 3.5 \times 10^{-4}$

CPV in D_(s) decays involving K_s⁰ @ LHCb

 CPV in charmed meson CF decays to Ks is theoretically suggested to be attributed to three parts:

$$A_{CP}(t) \simeq \left[A_{CP}^{\overline{K}^0}(t) + A_{CP}^{\mathrm{dir}}(t) + A_{CP}^{\mathrm{int}}(t)\right]/D(t)$$

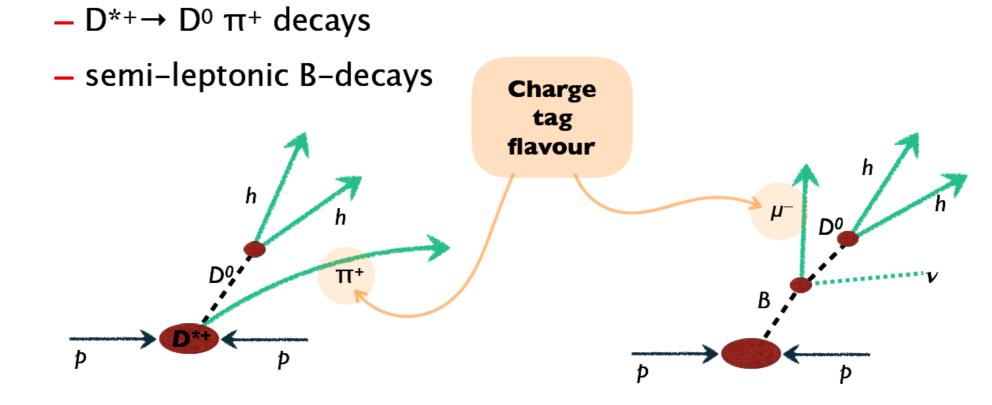
The current precision of $O(10^{-3})$ has been pushed that interference part is not negligible, as suggested by Yu et al. [PRL, 119 (2017) 181802]

- The CP asymmetry difference $\Delta A_{CP}^{K^+,\pi^+}$ between $A_{CP}^{D^+\to\pi^+K_S}$ and $A_{CP}^{D_S^+\to K^+K_S}$ provide a mode-independent way to measure the interference part
 - → a more realistic way to test the better-controlled SM prediction
 - → NP can enhance the asymmetry
- LHCb will have a precision of sub-level of permillage
 - → search for the CP asymmetry difference at the level of 10⁻³.


See Prof. Yu's talk this morning: link

Summary

- LHCb is a charm factory and has the world's largest sample of charm decays
- High statistics and superb detector performance allow for high precision measurements on A_{CP} parameters and search for rare decays
- Many more charm results in the pipeline using Run 1 and Run 2 data, stay tuned!
- Longer term: LHCb's first upgrade begins at the end of the year
 - Will allow for measurements with 10x larger samples
- Synergy with BESIII important for CPV searches in the charm sector



谢谢!

Charm flavour tagging

- In order to measure mixing and CPV, it is necessary to identify the flavour of the D⁰ meson.
- LHCb exploits two decays:

