Highlights on Charm Physics in Theory

Fu-Sheng Yu Lanzhou University

16th HFCPV @ Zhengzhou, 2018.10.26

Revolution: charm discovery

More and heavy flavors in particle zoo

Standard Model of particle physics

Why Charm Now?

1. New physics, up-type quark FCNC

GIM mechanism -> small in SM, sensitive to NP

2. QCD @
$$\mu \leq m_c$$
, $\frac{\Lambda_{\text{QCD}}}{m_c} \leq 1$

Margin of perturbative and non-perturbative QCD

3. Large data, higher precision

Outline

CPV in charm

- CPV is required by baryogenesis, the matterantimatter asymmetry in the Universe
- CPV has been well established in K and B systems, but never in charm

$$\Delta a_{CP}^{dir} = (-0.61 \pm 0.76) \times 10^{-3}$$
 $A_{\Gamma} = (-0.29 \pm 0.28) \times 10^{-3}$
LHCb, '16 & '17
NO CPV, but precision is below 10⁻³

 CPV in charm decays plays an unique role in searching for new physics (NP) — up sector

Direct CPV in charm Scenario 1 : SCS

$$\Delta A_{CP} \equiv A_{CP}(K^-K^+) - A_{CP}(\pi^-\pi^+)$$

See Xianwei Kang's talk

CPV in SCS decays: tree *v.s.* **penguin**

* Ambiguity in penguins

 heavy quark expansion 1/m_c, m_c=1.3GeV, does not work in exclusive processes

* $\Delta A_{CP}(K^+K^-, \pi^+\pi^-)$ predicted from 10-4 to 10-2

Grossman, Kagan, Nir, '07; Bigi, Paul, '11; Isidori, Kamenik, Ligeti, Perez, '11; Brod, Grossmann, Kagan, Zupan, '11, '12; Feldmann, Nandi, Soni, '12; Bhattarcharya, Gronau, Rosner, '12; Cheng, Chiang, '12; Li, Lu, **FSY**, '12; Franco, Mishima, Silvestrini, '12; Hiller, Jung, Schacht, '12; Khodjamirian, Petrov, '17.

$$\Delta a_{CP}^{\rm dir} = (-0.61 \pm 0.76) \times 10^{-3} \longrightarrow O(10^{-3})$$

* Even if CPV observed at 10⁻³ in individual mode, not distinguishable for NP or SM !!

Tree amplitudes

- Better understood, from data of BRs
 - Topological diagrams in flavor SU(3) symmetry Cheng, Chiang, '10, '16; Bhattarcharya, Rosner, '09
 - Topological diagrams in SU(3) breaking

Muller, Nierste, Schacht, '15

· Topological diagrams in factorization

Li, Lu, Qin, **FSY**, '12, '14

CPV in tree, would be better understood

Direct CPV in charm Scenario 2 : CF with *K***s**⁰

Postulated in literature: deducting kaon mixing, data reveal direct CPV in charm

Lipkin, Xing, '95; D'Ambrosio, Gao, '01; Bianco, Fabbri, Benson, Bigi, '03; Grossman, Nir, '12; Belle, '12

Due to the smallness of direct CPV, it can be used to search for new physics

However... Full decay chain

 $D^+ \rightarrow \pi^+ K(t) (\rightarrow \pi^+ \pi^-)$

Indirect CPV in kaon mixing

 $\operatorname{Re}(\epsilon)=10^{-3}$

Direct CPV in charm decays

 $Im(V_{cd}V_{us}/V_{cs}V_{ud}) = \lambda^6 = 10^{-5}$

Bigi, Yamamoto, '95

 $A_{CP}(t) = A_{CP}^{\overline{K}^0}(t) + A_{CP}^{\text{dir}}(t) + A_{CP}^{\text{int}}(t)$

CPV induced by mother decay and daughter mixing

Im(ϵ) Re(V_{cd}^{*}V_{us}/V_{cs}^{*}V_{ud})=10⁻⁴ ~ -3

D.Wang, FSY, H.n.Li, Phys.Rev.Lett 119, 181802(2017)

$$\Delta A_{CP} = A_{CP}(D^+ \rightarrow \pi^+ K_S^0) - A_{CP}(D_s^+ \rightarrow K^+ K_S^0)$$
Wang, FSY, Li, PRL'17
New Observable
revealing
new CPV effect
$$A_{CP}(t) \simeq \left[A_{CP}^{\overline{K}^0}(t) + A_{CP}^{dir}(t) + A_{CP}^{int}(t)\right]$$
Measurement @ LHCb
See Liang Sun's talk
$$I_5$$

New Physics in $D \rightarrow f K_S^0$

Search for new physics at tree-level

CPV in charm -> neutral Kaon

- * New CPV effect is found in CF $D \rightarrow K_{S}f$
 - mother decay and daughter mixing
 - Has to be subtracted to extract direct CPV
- * Accessible at Belle II and LHCb
 - An observable is proposed to measure it.
 - Large branching fractions for measurements
- * CPV stems from TREE amplitudes
 - Predictions better controlled by branching ratios
 - Promising for NP, compared to penguins

D.Wang, FSY, H.n.Li, Phys.Rev.Lett 119, 181802(2017)

2. Charmed Baryon Decays

Single-charm baryons

Double-charm baryons

Charm-Baryon Renaissance

Hai-Yang Cheng, '18:

dimension-7 operators play a key role, $1/m_c$ correction

See Hai-Yang's talk

Double-Charm Baryons Lifetimes

Lifetime is important in pp collisions, to reject backgrounds

Large ambiguity in literature

Literatures	Ξ_{cc}^{++} (fs)	$\Xi_{cc}^{+}(fs)$
Karliner, Rosner, 2014	185	53
Kiselev, Likhoded, Onishchenko, 1998	430±100	110±10
Kiselev, Likhoded, 2002	460±50	160±50
Chang, Li, Li, Wang, 2007	670	250
Cheng, Shi, 2018	300	45

See Hai-Yang's talk $\tau(\Xi_{cc}^{++}) > \tau(\Omega_{cc}^{+}) > \tau(\Xi_{cc}^{+})$

$$\tau(\Xi_{cc}^{++}) = (2.56^{+0.24}_{-0.22} \pm 0.14) \times 10^{-13} s$$
 LHCb, '18

Double-charm-baryon Searches

• **History** See Ji-bo's talk

Doubly charmed baryons exists in the quark model: SU(4)

Evidence

Topologies of two-body non-leptonic charmed baryon decays

Hierarchy in heavy quark expansion

SCET: IC/TI~IC'/TI~IE/TI~ $O(\Lambda_{QCD}/m_Q)$, IB/EI~ $O(\Lambda_{QCD}/m_Q)$,

Leibovich, Ligeti, Stewart, Wise, '04

- b decay: IC/TI~IC'/TI~IE/TI~IP/TI~O(Λ_{QCD}/m_Q)~0.2
- $$\label{eq:B/El-O} \begin{split} & \text{IB/El-O}(\Lambda_{QCD}/m_Q) \sim 0.2 \\ & \text{c decay: IC/Tl-IC'/Tl-IE/Tl-O}(\Lambda_{QCD}/m_Q) \sim 1 \end{split}$$

 $IB/EI \sim O(\Lambda_{QCD}/m_Q) \sim 1$

 $IPI \sim 0$

Short-distance effects

- external W-emission diagrams
- Calculate form factors in light-front quark model
- Calculate amplitudes using factorization approach

	$\Xi_{cc} \to \Xi_c / \Xi_c'(0^+)$			$\Xi_{cc} \to \Xi_c / \Xi_c'(1^+)$				
	f_1	g_1	f_2	g_2	f_1	g_1	f_2	g_2^*
F(0)	0.75	0.62	-0.78	-0.08	0.74	-0.20	0.80	-0.02
m_{fit}	1.84	2.16	1.67	1.29	1.58	2.10	1.62	1.62
δ	0.25	0.35	0.30	0.52	0.36	0.21	0.31	1.37
	$\Xi_{cc} \to \Lambda_c / \Sigma_c(0^+)$		$\Xi_{cc} \to \Lambda_c / \Sigma_c(1^+)$					
	f_1	g_1	f_2	g_2	f_1	g_1	f_2	g_2^*
F(0)	0.65	0.53	-0.74	-0.05	0.64	-0.17	0.73	-0.03
m_{fit}	1.72	2.03	1.56	1.12	1.49	1.99	1.53	2.03
δ	0.27	0.38	0.32	1.10	0.37	0.23	0.32	2.62

- Form factors are the most important inputs and basis for the theoretical developments.
- Zhen-Xing Zhao's contributions are indispensable.

Short-Distance Effects

• External W-emission processes using factorization approach $A(\Xi_{cc} \rightarrow \mathcal{B}_c M)_{SD}$

$$= \frac{G_F}{\sqrt{2}} V_{cq'}^* V_{uq} a_1(a_2) \langle M | \bar{u} \gamma^\mu (1 - \gamma_5) q | 0 \rangle \langle \mathcal{B}_c | \bar{q}' \gamma_\mu (1 - \gamma_5) | \Xi_{cc} \rangle$$

Relative branching fractions are reliable

$$\begin{aligned} &\mathcal{B}(\Xi_{cc}^{+} \to \Xi_{c}^{0} \pi^{+}) / \mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{+} \pi^{+}) = \mathcal{R}_{\tau} = 0.25 \sim 0.37, \\ &\mathcal{B}(\Xi_{cc}^{++} \to \Lambda_{c}^{+} \pi^{+}) / \mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{+} \pi^{+}) = 0.056, \\ &\mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{+} \ell^{+} \nu) / \mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{+} \pi^{+}) = 0.71, \end{aligned}$$

Uncertainties of form factors are mostly cancelled

 $\mathcal{B}(\Xi_{cc}^{++}\to\Xi_c^+\pi^+)$ is the largest one

Long-distance Effects

- final-state interacting (FSI) effects
 - significantly large in charm decays
- Calculate rescattering effects

- It is the first work on the long-distance effects of doubly charmed baryon decays. The rescattering mechanism was firstly established in the doubly charmed baryon decays.
- Thanks to Hua-Yu Jiang's and Run-Hui Li's contribution.

Relative Branching Fractions with long-distance contributions

	Baryons	Modes	$\mathcal{B}_{ ext{LD}}$
	$\Xi_{cc}^{++}(ccu)$	$\Sigma_c^{++}(2455)\overline{K}^{*0}$	defined as 1
Largest		pD^{*+}	0.04
		pD^+	0.0008
	$\Xi_{cc}^+(ccd)$	$\Lambda_c^+ \overline{K}^{*0}$	$(\mathcal{R}_{\tau}/0.3) \times 0.22$
		$\Sigma_c^{++}(2455)K^-$	$(\mathcal{R}_{ au}/0.3) imes 0.008$
		$\Xi_c^+ ho^0$	$(\mathcal{R}_{\tau}/0.3) \times 0.04$
		ΛD^+	$(\mathcal{R}_{\tau}/0.3) \times 0.004$
		pD^0	$(\mathcal{R}_{ au}/0.3) imes 0.002$

Theoretical uncertainties are still very large, but reduced in the relative branching fractions

$$\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+ \text{ V.S. } \Xi_{cc}^+ \rightarrow \Lambda_c^+ K^- \pi^+$$
SELEX's discovery channe
LHCb measured

Baryons	Modes	$\mathcal{B}_{ ext{LD}}$	
$\Xi_{cc}^{++}(ccu)$	$\Sigma_c^{++}(2455)\overline{K}^{*0}$	defined as 1	$\Lambda_c^+ K^- \pi^+ \pi^+$
$\tau \times (\sim 3)$	pD^{*+}	0.04	$3r \times 5$
	pD^+	0.0008	
$\Xi_{cc}^+(ccd)$	$\Lambda_c^+ \overline{K}^{*0}$	$(\mathcal{R}_{\tau}/0.3) \times 0.22$	$\Lambda + T +$
	$\Sigma_{c}^{++}(2455)K^{-}$	$(\mathcal{R}_{ au}/0.3) imes 0.008$	Λ_c Λ π '
	$\Xi_c^+ ho^0$	$(\mathcal{R}_{\tau}/0.3) \times 0.04$	
	ΛD^+	$(\mathcal{R}_{ au}/0.3) imes 0.004$	
	pD^0	$(\mathcal{R}_{ au}/0.3) imes 0.002$	

 $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$ has more signal yields around one more order than $\Xi_{cc}^+ \rightarrow \Lambda_c^+ K^- \pi^+$

Discovery Potentials of Doubly Charmed Baryons

Abstract

The existence of doubly heavy flavor baryons has not been well established experimentally so far. In this Letter we systematically investigate the weak decays of the doubly charmed baryons, Ξ_{cc}^{++} and Ξ_{cc}^{+} , which should be helpful for experimental searches for these particles. The long-distance contributions are first studied in the doubly heavy baryon decays, and found to be significantly enhanced. Comparing all the processes $\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+$ and $\Xi_c^+ \pi^+$ are the most favorable decay modes for experiments to search for doubly heavy baryons. FSY, Jiang, Li, Lü, Wang, Zhao, 1703.09086 5 MeV/c 180 - LHCb 13 TeV LHCb 🕂 Data 160 Total +Data ---- Signal -Total Candidates per --- Background 120Signal Background 100 80 July July 20 20 0 2017 3600 2018 3500 3700 3550 3600 3650 3700 3500 $m_{\rm cand}(\Xi_{cc}^{++})$ [MeV/ c^2] $m(\Xi_c^+\pi^+)$ [MeV/ c^2] $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{+} \pi^{+}$ $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$

LHCb observed Ξ_{cc}^{++}

LHCb Run-I Data Analysis

It could be observed in 2013 if using the correct mode !!!

List of studies on weak decays

1. Doubly heavy baryon weak decays: $\Xi_{hc}^0 \rightarrow pK^-, \Xi_{cc}^+ \rightarrow \Sigma_c^{++}K^-$ 1701.03284 2. Discovery potentials of doubly charmed baryons 1703.09086 $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+, \ \Xi_c^+ \pi^+$ 3. Weak decays of doubly heavy baryons: the $1/2 \rightarrow 1/2$ case 1707.02834 4. Weak decays of doubly heavy baryons : SU(3) analysis 1707.06570 5. Weak decays of doubly heavy baryons : decay constant 1711.10289 6. Weak decays of doubly heavy baryons : Multi-body decays 1712.03830 7. Weak decays of doubly heavy baryons: the $1/2 \rightarrow 3/2$ case 1805.10878 8. Weak decays of doubly heavy baryons: $\mathscr{B}_{cc} \to \mathscr{B}_{c}V$ 1810.00541 9. Weak decays of triply heavy baryons 1803.01476

Hua-Yu Jiang, Run-Hui Li and Zhen-Xing Zhao are the pioneers and also contribute to a series of studies on the decays of doubly heavy baryons

Prospect of theoretical studies

- 1.Discovery potentials of Xi_cc^+, Omega_cc^+
- 2.Discovery potentials of Xi_bc, Omega_bc
- 3.Semileptonic decays
- 4. Effective theory of doubly heavy baryons
- 5.Lifetimes?
- 6.New physics and CPV?
- 7.Omega_ccc?

WG:兰州大学、高能所、上海交大、内蒙古大学、烟台大学、南京师大

Summary

- Charm physics is becoming more charming
- Highlights in theory:
 - 1. New CPV effect in charm

2. Predictions on the discovery channels of doubly charmed baryon

Welcome to play the charming games

Thanks!

