Charmed Meson Hadronic decays at **BESIII Bai-Cian Ke** IHEP

Outline

Introduction

- Important variables
- D⁰, D⁺, and D_s Dataset
- DTag and Branching Fraction
- •Branching Fraction Measurement of D Hadronic decays
 - η 'X, omega π , p n^{bar}, etc.
- Amplitude Analysis
 - K-π+π+π-, K_Sπ+π+π-, K-π+π⁰π⁰, π+π⁰η etc.
- Summary

Important Variables

Beam-Constrained Mass (M_{BC})

$$M_{\rm BC} = \sqrt{E_{\rm beam}^2 - |\vec{p_D}|^2}$$

*M*_{BC} peaks at D mass: momentum conservation

Energy Difference (ΔE)

$$\Delta E = E_D - E_{\text{beam}}$$

 ΔE peaks at zero: energy conservation

Typically cut on ΔE , then fit to $M_{\rm BC}$ obtain yield

BESIII Data Taken near DD^{bar} Threshold

- BEPCII collider: $e^+e^- \rightarrow \psi(3770) \rightarrow DD^{bar}$
- 2.9 fb⁻¹ dataset at $\psi(3770)$ resonance

 M_{D0} = 1864.84 MeV M_{D+} = 1869.62 MeV

2M_{D0}= 3729.68 MeV 2M_{D+}= 3739.24 MeV

- New 3.19 fb⁻¹ dataset at E_{cm} 4.178GeV
 - D_s are produced mostly via $e^+e^- \rightarrow D_s D_s^*$
- Advantages of DD^{bar} pair production near threshold
 - The DD^{bar} events are clean; not enough energy for even one additional pion
 - Tagging reduces background from light-quark "continuum" and other charm final states
 - Double tag technique can provide access to absolute BFs
 - Many systematic uncertainties cancel with tagging technique

DTag Technique

- There are two types of samples used in the Dtag technique: single tag (ST) and double tag (DT).
- Single tag: only one D meson is reconstructed through a chosen hadronic decay.
- Double tag: both D and \overline{D} are reconstructed,
- the D reconstructed through the studied hadronic decay is called "the signal side".
- the D reconstructed through well-known and clean hadronic decay modes is called "the tag side".
- (Charge-conjugate states are implied throughout this talk.)

Branching Fraction and Tagging

• Single tag (ST)

$$N_{\rm tag}^{\rm ST} = 2N_{D^0\bar{D}^0}\mathcal{B}_{\rm tag}\varepsilon_{\rm tag}$$

- Double tag (DT)
 - $N_{\rm tag,sig}^{\rm DT} = 2N_{D^0\bar{D}^0}\mathcal{B}_{\rm tag}\mathcal{B}_{\rm sig}\varepsilon_{\rm tag,sig}$

 $\varepsilon_{\mathrm{tag,sig}} \approx \varepsilon_{\mathrm{tag}} \varepsilon_{\mathrm{sig}}$ (factorization)

where $N_{D^0\bar{D}^0}$ is the total number of produced $D^0\bar{D}^0$ pairs, $\mathcal{B}_{\text{tag(sig)}}$ is the branching fraction of the tag (signal) side, and the ε are the corresponding efficiencies.

$$\blacktriangleright \mathcal{B}_{\text{sig}} = \frac{N_{\text{tag,sig}}^{\text{DT}}}{N_{\text{tag}}^{\text{ST}}} \frac{\varepsilon_{\text{tag}}}{\varepsilon_{\text{tag,sig}}}$$

 $N_{D^0\bar{D}^0}$, \mathcal{B}_{tag} are canceled. ε_{tag} is approximately canceled due to factorization

This is the basic idea for branching fraction. Equations used in analysis vary case by case.

Measurements of the branching fraction of $D_s^+ \rightarrow \eta' X$

Single tag nine tag modes

A two-dimensional fit to M_{BC} (tag) vs. $M(\eta'_{\pi+\pi-\eta})$ (signal) is performed to obtain the DT yields.

$\mathcal{B}(D_s^+ \to \eta' X) = (8.8 \pm 1.8 \pm 0.5)\%$

Measurements of the branching fraction of $D_s^+ \rightarrow \eta' \rho^+$

Using the DT samples from $D_s^+ \rightarrow \eta' X$ analysis, invariant mass cuts on η' and ρ^+ are applied to enrich the $D_s^+ \rightarrow \eta' \rho^+$ signal events.

A two-dimensional fit to the distribution of $M_{_{BC}}$ vs. $\cos\theta_{_{\pi^+}}$ to determine the signal yield.

Physics Letters B 750 (2015) 466-474

Observation of the Singly Cabibbo-Suppressed Decay $D^+ \rightarrow \omega \pi^+$ and Evidence for $D^0 \rightarrow \omega \pi^0$

Chose six (five) decay modes for $D^{+(0)}$.

In order to have a better solution for $D^{+(0)} \rightarrow \pi^+\pi^-\pi^0\pi^{+(0)}$ background, DT samples $D^{+(0)} \rightarrow \pi^+\pi^-\pi^0\pi^{+(0)}$ vs. tag modes are reconstructed first. Then fits to $\pi^+\pi^-\pi^0$ mass are performed.

Note that we are searching for $\omega \rightarrow \pi^+\pi^-\pi^0$.

$$\mathcal{B}_{\rm sig} = \frac{\sum_{\alpha} N_{\rm sig}^{\rm obs,\alpha}}{\sum_{\alpha} N_{\rm tag}^{\rm obs,\alpha} \epsilon_{\rm tag,sig}^{\alpha} / \epsilon_{\rm tag}^{\alpha}}$$

FIG. 1. $M_{\rm BC}$ distributions of ST samples for different tag modes. The first two rows show charged *D* decays: (a) $K^+\pi^-\pi^-$, (b) $K^+\pi^-\pi^-\pi^0$, (c) $K_S^0\pi^-$, (d) $K_S^0\pi^-\pi^0$, (e) $K_S^0\pi^+\pi^-\pi^-$, (f) $K^+K^-\pi^-$, the latter two rows show neutral *D* decays: (g) $K^+\pi^-$, (h) $K^+\pi^-\pi^0$, (i) $K^+\pi^-\pi^+\pi^-$, (j) $K^+\pi^-\pi^0\pi^0$, (k) $K^+\pi^-\pi^+\pi^-\pi^0$. Data are shown as points, the (red) solid lines are the total fits and the (blue) dashed lines are the background shapes. *D* and \overline{D} candidates are combined.

DT $D^{+(0)} \rightarrow \pi^+\pi^-\pi^0\pi^{+(0)}$ vs. tag modes

Fits to $M3\pi$ distributions of signal and sideband regions to obtain the signal and peaking background yields, respectively.

Events counts in sidebands are projected into the signal region with scale factors.

ModeH	$N_{\omega(\eta)}$	$N^{ m bkg}_{\omega(\eta)}$	$N_{ m sig}^{ m obs}$
$D^+ \rightarrow \omega \pi^+$	100 ± 16	21 ± 4	79 ± 16
$D^0 \to \omega \pi^0$	50 ± 12	5 ± 5	45 ± 13
$D^+ \rightarrow \eta \pi^+$	264 ± 17	6 ± 2	258 ± 18
$D^0 o \eta \pi^0$	78 ± 10	3 ± 2	75 ± 10

Mode	This work	Previous measurements
$D^+ \rightarrow \omega \pi^+$	$(2.79\pm0.57\pm0.16)\times10^{-4}$	$< 3.4 \times 10^{-4}$ at 90% C.L.
$D^0 \rightarrow \omega \pi^0$	$(1.17\pm0.34\pm0.07)\times10^{-4}$	$< 2.6 \times 10^{-4}$ at 90% C.L.
$D^+ \rightarrow \eta \pi^+$	$(3.07\pm0.22\pm0.13)\times10^{-3}$	$(3.53\pm0.21)\times10^{-3}$
$D^0 \rightarrow \eta \pi^0$	$(0.65\!\pm\!0.09\!\pm\!0.04)\!\times\!10^{-3}$	$(0.68\pm0.07)\times10^{-3}$

PRL 116, 082001 (2016)

Preliminary result for $D_s \rightarrow pn^{bar}$

With 3.19 fb⁻¹ data @ 4.178GeV collected by the BESIII

Double tag

- Kinematic fit to improve missing neutron resolution
 Constraint the 4 momenta of the total events.
- Constraint the 4 momenta of the total events.
 the two Ds and Ds* mass, set anti-neutron 4 momenta free: (7-4)C
- Set two hypotheses to select the one with smaller χ^2
 - $Ds^* \rightarrow \gamma Ds(\rightarrow tag modes)$
 - Ds* $\rightarrow \gamma$ Ds($\rightarrow p\bar{n}$)
- No peaking background
- Signal efficiency $\sim 48\%$ from inclusive MC

Preliminary result

$$\mathcal{B}_{D_s \to p\bar{n}} = \frac{1}{\mathcal{B}_{D_s^* \to \gamma D_s}} \cdot \frac{N_{DT}}{N_{ST}} \cdot \frac{\epsilon_{ST}}{\epsilon_{DT}}$$
$$= \frac{1}{\mathcal{B}_{D_s^* \to \gamma D_s}} \cdot \frac{\sum N_{DT}}{\sum (N_{ST} \cdot \frac{\epsilon_{DT}}{\epsilon_{ST}})}$$

By combining the 11 tag modes together, we obtain (only statistic error here):

$$\mathcal{B}_{D_s^+ \to p\bar{n}} = (1.22 \pm 0.10) \times \frac{10^{-3}}{\text{BESII}}$$
 preliminary

- Statistically limited.
- Uncertainty due to baryon ID dominates the systematic
- Confirm CLEO-c's measurement with greatly improved accuracy
- Consistent with the prediction of the enhanced BR due to long-distance effect via hadronic loop

Signal: MC shape \otimes Gaussian Background: Argus function

5

Preliminary results on observation of $D_s^{\ +} \rightarrow \omega \pi^+ \ and \ \omega K^+$

With 3.19 fb⁻¹ data @ 4.178GeV collected by the BESIII

Double tag: One $M_{rec} > 2.1 \text{ GeV}$

- Best candidate: average mass of two D_s mesons closet to PDG value.
- K_s^0 veto for $D_s^+ \to \omega K^+$ to suppress the background from $D_s^+ \to \overline{K}^{*0}K^+$: If $|m_{\pi\pi} - 0.4976| < 0.03 \text{GeV}$, $L_{decay}/\sigma_{L_{decay}} > 2.0$, veto this event.

Signal mode	Branching fraction (${f 10^{-3}}$)	Statistical significance (σ)
$D_s^+ \to \omega \pi^+$	$1.85 \pm 0.30(stat.) \pm 0.19(sys.)$	7.7
$D_s^+ \to \omega K^+$	$1.13 \pm 0.24(stat.) \pm 0.14(sys.)$	6.2

Amplitude Analysis of Κπππ

•There are seven $D \to K3\pi$ modes:

- $D^0 \rightarrow K^-\pi^+\pi^+\pi^-$ (published on PRD) PhysRevD.95.072010
- $D^0 \rightarrow K^-\pi^+\pi^0\pi^0$ (expected to publish on PRD soon)
- $D^0 {\rightarrow} \ K_S \pi^0 \pi^0 \pi^0$
- $D^0 \rightarrow K_S \pi^+ \pi^- \pi^0$ (on-going)
- $D^+ \rightarrow K^- \pi^+ \pi^+ \pi^0$ (on-going)
- $D^+ \rightarrow K_S \pi^+ \pi^0 \pi^0$ (on-going)
- $D^+ \rightarrow K_S \pi^+ \pi^+ \pi^-$ (expected to publish on PRD soon)
- Four-body decays are in five-dimensions

•We have

- Partial Wave Analysis Tools based on CPU and GPU kernel
- Great Electro-Magnetic Calorimeter (EMC) with Csl
 - \rightarrow superior resolution and efficiency of π^0
- Largest dataset at $\psi(3770)$ resonance
 - \rightarrow small statistical errors and clean background

Partial Wave Analysis

where p_j is the daughter particles' four momenta and $\underline{a_i}$ is the complex coefficient for amplitude modes. $\epsilon(p_j)$ is the efficiency parameterized in terms of the daughter particles' four momenta. R_4 is the 4-body phase space

$$A_i(p_j) = P_i^1(p_j) P_i^2(p_j) S_i(p_j) F_i^1(p_j) F_i^2(p_j) F_i^D(p_j)$$

where $F_i^D(p_j)$ is the Blatt-Weisskopf Barrier factor for D meson. $P_i^{1,2}(p_j)$ and $F_i^{1,2}(p_j)$ is the propagator and the Blatt-Weisskopf Barrier factor, respectively, of the two resonance states for the quasi-two-body type or of the first and the second resonance states for the cascade type. $S_i(p_j)$ is the spin factor. Finally, the likelihood can be defined as

For n events
$$\prod_{j=1}^{n} S(a_i, p_j)$$

Define the likelihood $L = \prod_{j=1}^{n} S(a_i, p_j)$

Partial Wave Analysis Ind

Independent of a_i

$$\ln L = \sum_{j}^{N_{selected}} \ln \left(\frac{|A(a_i, p_j)|^2 R_4(p_j)}{\int \epsilon(p_j) |A(a_i, p_j)|^2 R_4(p_j) dp_j} \right) + \sum_{j}^{N_{selected}} \ln \epsilon(p_j)$$
$$\int \epsilon(p_j) |A(a_i, p_j)|^2 R_4(p_j) dp_j \approx \frac{1}{N_{generated}} \sum_{j}^{N_{selected}} |A(a_i, p_j)|^2$$

Phase space MC sample can be used to deal with the MC integration. We replace phase space MC sample by signal MC sample for better precision.

$$\int \epsilon(p_j) |A(a_i, p_j)|^2 R_4(p_j) dp_j \approx \frac{1}{N_{MC}} \sum_{j}^{N_{MC}} \frac{|A(a_i, p_j)|^2}{|A(a_i^{gen}, p_j)|^2}$$

We further consider the effects of detector efficiency difference between data and MC simulation for pi0 reconstruction, PID, and tracking

$$\int \epsilon(p_j) |A(a_i, p_j)|^2 R_4(p_j) dp_j \approx \frac{1}{N_{MC}} \sum_{j}^{N_{MC}} \frac{|A(a_i, p_j)|^2 \gamma_\epsilon(p_j)}{|A(a_i^{gen}, p_j)|^2}$$

where
$$\gamma_{\epsilon}(p_j) = \prod_j \frac{\epsilon_{j,\text{data}}(p_j)}{\epsilon_{j,\text{MC}}(p_j)}$$

Amplitude Analysis Results of $D^0 \rightarrow K^-\pi^+\pi^+\pi^-$

Double tag $D^0 \rightarrow K^-\pi^+\pi^+\pi^-$ vs. $\overline{D}^0 \rightarrow K^+\pi^-$ The number of event selected is 15912 with a purity of 99.4% The data can be described with 23 amplitudes:

Amplitude	ϕ_i	Fit fraction $(\%)$
$D^0[S] \to \bar{K}^* \rho^0$	$2.35 \pm 0.06 \pm 0.18$	$6.5\pm0.5\pm0.8$
$D^0[P] \to \bar{K}^* \rho^0$	$-2.25 \pm 0.08 \pm 0.15$	$2.3\pm0.2\pm0.1$
$D^0[D] \to \bar{K}^* \rho^0$	$2.49 \pm 0.06 \pm 0.11$	$7.9\pm0.4\pm0.7$
$D^0 \to K^- a_1^+(1260), a_1^+(1260)[S] \to \rho^0 \pi^+$	0(fixed)	$53.2 \pm 2.8 \pm 4.0$
$D^0 \to K^- a_1^+(1260), a_1^+(1260)[D] \to \rho^0 \pi^+$	$-2.11 \pm 0.15 \pm 0.21$	$0.3\pm0.1\pm0.1$
$D^0 \to K_1^-(1270)\pi^+, K_1^-(1270)[S] \to \bar{K}^{*0}\pi^-$	$1.48 \pm 0.21 \pm 0.24$	$0.1\pm0.1\pm0.1$
$D^0 \to K_1^-(1270)\pi^+, K_1^-(1270)[D] \to \bar{K}^{*0}\pi^-$	$3.00 \pm 0.09 \pm 0.15$	$0.7\pm0.2\pm0.2$
$D^0 \to K_1^-(1270)\pi^+, K_1^-(1270) \to K^-\rho^0$	$-2.46 \pm 0.06 \pm 0.21$	$3.4\pm0.3\pm0.5$
$D^0 \to (\rho^0 K^-)_{\rm A} \pi^+, (\rho^0 K^-)_{\rm A} [D] \to K^- \rho^0$	$-0.43 \pm 0.09 \pm 0.12$	$1.1\pm0.2\pm0.3$
$D^0 \to (K^- \rho^0)_{\rm P} \pi^+$	$-0.14 \pm 0.11 \pm 0.10$	$7.4\pm1.6\pm5.7$
$D^0 \rightarrow (K^- \pi^+)_{\rm S} \rho^0$	$-2.45 \pm 0.19 \pm 0.47$	$2.0\pm0.7\pm1.9$
$D^0 \rightarrow (K^- \rho^0)_V \pi^+$	$-1.34 \pm 0.12 \pm 0.09$	$0.4\pm0.1\pm0.1$
$D^0 \to (\bar{K}^{*0}\pi^-)_{\rm P}\pi^+$	$-2.09 \pm 0.12 \pm 0.22$	$2.4\pm0.5\pm0.5$
$D^0 \to \bar{K}^{*0} (\pi^+ \pi^-)_{\rm S}$	$-0.17 \pm 0.11 \pm 0.12$	$2.6\pm0.6\pm0.6$
$D^0 \to (\bar{K}^{*0}\pi^-)_{\rm V}\pi^+$	$-2.13 \pm 0.10 \pm 0.11$	$0.8\pm0.1\pm0.1$
$D^0 \to ((K^- \pi^+)_{\rm S} \pi^-)_{\rm A} \pi^+$	$-1.36 \pm 0.08 \pm 0.37$	$5.6\pm0.9\pm2.7$
$D^0 \to K^-((\pi^+\pi^-)_{\rm S}\pi^+)_{\rm A}$	$-2.23 \pm 0.08 \pm 0.22$	$13.1\pm1.9\pm2.2$
$D^0 \to (K^- \pi^+)_{\rm S} (\pi^+ \pi^-)_{\rm S}$	$-1.40 \pm 0.04 \pm 0.22$	$16.3\pm0.5\pm0.6$
$D^0[S] \to (K^- \pi^+)_V (\pi^+ \pi^-)_V$	$1.59 \pm 0.13 \pm 0.41$	$5.4\pm1.2\pm1.9$
$D^0 \to (K^- \pi^+)_{\rm S} (\pi^+ \pi^-)_{\rm V}$	$-0.16 \pm 0.17 \pm 0.43$	$1.9\pm0.6\pm1.2$
$D^0 \to (K^- \pi^+)_{\rm V} (\pi^+ \pi^-)_{\rm S}$	$2.58 \pm 0.08 \pm 0.25$	$2.9\pm0.5\pm1.7$
$D^0 \to (K^- \pi^+)_{\rm T} (\pi^+ \pi^-)_{\rm S}$	$-2.92 \pm 0.14 \pm 0.12$	$0.3\pm0.1\pm0.1$
$D^0 \to (K^- \pi^+)_{\rm S} (\pi^+ \pi^-)_{\rm T}$	$2.45 \pm 0.12 \pm 0.37$	$0.5\pm0.1\pm0.1$

Amplitude Analysis Results of $D^0 \rightarrow K^-\pi^+\pi^+\pi^-$

Projections of invariant mass (a-h) and χ distribution (i)

Amplitude Analysis Results of $D^0 \rightarrow K^-\pi^+\pi^+\pi^-$

Results of branching fractions for different components:

Component	Branching fraction (%)	PDG value (%)
$D^0 \to \bar{K}^{*0} \rho^0$	$0.99 \pm 0.04 \pm 0.04 \pm 0.03$	1.05 ± 0.23
$D^0 \to K^- a_1^+ (1260)(\rho^0 \pi^+)$	$4.41 \pm 0.22 \pm 0.30 \pm 0.13$	3.6 ± 0.6
$D^0 \to K_1^-(1270)(\bar{K}^{*0}\pi^-)\pi^+$	$0.07 \pm 0.01 \pm 0.02 \pm 0.00$	0.29 ± 0.03
$D^0 \to K_1^-(1270)(K^-\rho^0)\pi^+$	$0.27 \pm 0.02 \pm 0.04 \pm 0.01$	
$D^0 \to K^- \pi^+ \rho^0$	$0.68 \pm 0.09 \pm 0.20 \pm 0.02$	0.51 ± 0.23
$D^0 ightarrow ar{K}^{*0} \pi^+ \pi^-$	$0.57 \pm 0.03 \pm 0.04 \pm 0.02$	0.99 ± 0.23
$D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-$	$1.77 \pm 0.05 \pm 0.04 \pm 0.05$	1.88 ± 0.26
S	stat. uncertainty from FF	
	sys. uncertainty from FF	
	uncertainties related to $BF(D)$	$^0 \rightarrow K^- \pi^+ \pi^+ \pi^-$) in PDC

Published in PRD 95, 072010

Amplitude Analysis Results of $D^0 \rightarrow K^-\pi^+\pi^0\pi^0$

Double tag: $D^0 \rightarrow K^-\pi^+\pi^0\pi^0$ (signal) vs. $\overline{D}^0 \rightarrow K^+\pi^-$ (tag) The number of event selected is 5950 with a purity of ~99% The data can be described with 26 amplitudes:

Amplitude mode	$\mathbf{FF}(\%)$	Phase (ϕ)
$D \rightarrow SS$		
$D \rightarrow (K^- \pi^+)_{S-\text{wave}} (\pi^0 \pi^0)_S$	$6.92 \pm 1.44 \pm 2.86$	$-0.75 \pm 0.15 \pm 0.47$
$D \rightarrow (K^- \pi^0)_{S-\text{wave}} (\pi^+ \pi^0)_S$	$4.18 \pm 1.02 \pm 1.77$	$-2.90 \pm 0.19 \pm 0.47$
$D \to AP, A \to VP$		
$D \to K^{-}a_1(1260)^+, \rho^+\pi^0[S]$	$28.36 \pm 2.50 \pm 3.53$	0 (fixed)
$D \to K^- a_1(1260)^+, \rho^+ \pi^0 [D]$	$0.68 \pm 0.29 \pm 0.30$	$-2.05 \pm 0.17 \pm 0.25$
$D \to K_1(1270)^- \pi^+, K^{*-} \pi^0 [S]$	$0.15 \pm 0.09 \pm 0.18$	$1.84 \pm 0.34 \pm 0.43$
$D \to K_1(1270)^0 \pi^0, K^{*0} \pi^0[S]$	$0.39 \pm 0.18 \pm 0.30$	$-1.55 \pm 0.20 \pm 0.26$
$D \to K_1(1270)^0 \pi^0, K^{*0} \pi^0[D]$	$0.11 \pm 0.11 \pm 0.13$	$-1.35 \pm 0.43 \pm 0.48$
$D \to K_1(1270)^0 \pi^0, K^- \rho^+[S]$	$2.71 \pm 0.38 \pm 0.29$	$-2.07 \pm 0.09 \pm 0.20$
$D \to (K^{*-}\pi^0)_A \pi^+, K^{*-}\pi^0[S]$	$1.85 \pm 0.62 \pm 1.11$	$1.93 \pm 0.10 \pm 0.15$
$D \to (K^{*0}\pi^0)_A \pi^0, K^{*0}\pi^0[S]$	$3.13 \pm 0.45 \pm 0.58$	$0.44 \pm 0.12 \pm 0.21$
$D \to (K^{*0}\pi^0)_A \pi^0, K^{*0}\pi^0[D]$	$0.46 \pm 0.17 \pm 0.29$	$-1.84 \pm 0.26 \pm 0.42$
$D \to (\rho^+ K^-)_A \pi^0, K^- \rho^+ [D]$	$0.75 \pm 0.40 \pm 0.60$	$0.64 \pm 0.36 \pm 0.53$
$D \to AP, A \to SP$	BESIIIPreliminar	Ŷ
$D ightarrow ((K^-\pi^+)_{S ext{-wave}}\pi^0)_A\pi^0$	$1.99 \pm 1.08 \pm 1.55$	$-0.02 \pm 0.25 \pm 0.53$
$D \rightarrow VS$		
$D ightarrow (K^- \pi^0)_{S ext{-wave}} ho^+$	$14.63 \pm 1.70 \pm 2.41$	$-2.39 \pm 0.11 \pm 0.35$
$D o K^{*-}(\pi^+\pi^0)_S$	$0.80 \pm 0.38 \pm 0.26$	$1.59 \pm 0.19 \pm 0.24$
$D ightarrow K^{st 0}(\pi^0\pi^0)_S$	$0.12 \pm 0.27 \pm 0.27$	$1.45 \pm 0.48 \pm 0.51$
$D \to VP, V \to VP$		
$D \to (K^{*-}\pi^+)_V \pi^0$	$2.25 \pm 0.43 \pm 0.45$	$0.52 \pm 0.12 \pm 0.17$
$D \rightarrow VV$		
$D[S] ightarrow K^{*-} ho^+$	$5.15 \pm 0.75 \pm 1.28$	$1.24 \pm 0.11 \pm 0.23$
$D[P] \rightarrow K^{*-} \rho^+$	$3.25 \pm 0.55 \pm 0.41$	$-2.89 \pm 0.10 \pm 0.18$
$D[D] \rightarrow K^{*-} \rho^+$	$10.90 \pm 1.53 \pm 2.36$	$2.41 \pm 0.08 \pm 0.16$
$D[P] \rightarrow (K^- \pi^0)_V \rho^+$	$0.36 \pm 0.19 \pm 0.27$	$-0.94 \pm 0.19 \pm 0.28$
$D[D] \rightarrow (K^- \pi^0)_V \rho^+$	$2.13 \pm 0.56 \pm 0.92$	$-1.93 \pm 0.22 \pm 0.25$
$D[D] \to K^{*-} (\pi^+ \pi^0)_V$	$1.66 \pm 0.52 \pm 0.61$	$-1.17 \pm 0.20 \pm 0.39$
$D[S] \to (K^- \pi^0)_V (\pi^+ \pi^0)_V$	$5.17 \pm 1.91 \pm 1.82$	$-1.74 \pm 0.20 \pm 0.31$
$D \rightarrow TS$		
$D \rightarrow (K^- \pi^+)_{S-\text{wave}} (\pi^0 \pi^0)_T$	$0.30 \pm 0.21 \pm 0.32$	$-2.93 \pm 0.31 \pm 0.82$
$D ightarrow (K^- \pi^0)_{S ext{-wave}} (\pi^+ \pi^0)_T$	$0.14 \pm 0.12 \pm 0.10$	$2.23 \pm 0.38 \pm 0.65$

21

Amplitude Analysis Results of $D^0 \rightarrow K^-\pi^+\pi^0\pi^0$

Branching Fraction Results of $D^0 \rightarrow K^-\pi^+\pi^0\pi^0$

Events / (0.001 GeV /c²) ଜୁ

10

1.83

1.84

Data

Total

Signal

- Background

1.86

M_{BC} (GeV/c²)

(a)DT $(K^-\pi^+\pi^0\pi^0)$

1.87

1.85

The amplitude analysis result is used to determine the detection efficiency, where the DT efficiency is 8.39%

The branching fraction is determined to be

$$\mathcal{B}(D^0 \to K^- \pi^+ \pi^0 \pi^0) = (8.98 \pm 0.13 (\text{stat}) \pm 0.40 (\text{syst}))\%$$

Amplitude Analysis of $D^+ \rightarrow K_S \pi^+ \pi^+ \pi^-$

Double tag $D^+ \rightarrow K_S \pi^+ \pi^+ \pi^- vs. D^- \rightarrow K^+ \pi^- \pi^-$ The number of event selected is 4559 with a purity of ~99% The data can be described with 12 amplitudes:

Amplitude	ϕ	fit fraction
$D^+ \to K^0_S a_1(1260)^+, a_1(1260)^+ \to \rho^0 \pi^+[S]$	0.000(fixed)	$0.567 \pm 0.020 \pm 0.044$
$D^+ \to K_S^0 a_1(1260)^+, a_1(1260)^+ \to f_0(500)\pi^+$	$-2.023 \pm 0.068 \pm 0.113$	$0.050 \pm 0.006 \pm 0.007$
$D^+ \to \bar{K}_1(1400)^0 \pi^+, \bar{K}_1(1400)^0 \to K^{*-} \pi^+[S]$	$-2.714 \pm 0.038 \pm 0.051$	$0.380 \pm 0.013 \pm 0.014$
$D^+ \to \bar{K}_1(1400)^0 \pi^+, \bar{K}_1(1400)^0 \to K^{*-} \pi^+[D]$	$3.431 \pm 0.137 \pm 0.117$	$0.015 \pm 0.004 \pm 0.005$
$D^+ \to \bar{K}_1(1270)^0 \pi^+, \bar{K}_1(1270)^0 \to K^0_S \rho^0[S]$	$-0.418 \pm 0.070 \pm 0.087$	$0.036 \pm 0.004 \pm 0.002$
$D^+ \to \bar{K}(1460)^0 \pi^+, \bar{K}(1460)^0 \to K_S^0 \rho^0$	$-1.850 \pm 0.120 \pm 0.223$	$0.014 \pm 0.004 \pm 0.003$
$D^+ \to (K^0_S \rho^0)_A [D] \pi^+$	$2.328 \pm 0.097 \pm 0.068$	$0.011 \pm 0.003 \pm 0.002$
$D^+ \to K^0_S(\rho^0 \pi^+)_P$	$1.656 \pm 0.083 \pm 0.056$	$0.031 \pm 0.004 \pm 0.010$
$D^+ \to (K^{*-}\pi^+)_A[S]\pi^+$	$-4.321 \pm 0.047 \pm 0.073$	$0.132 \pm 0.011 \pm 0.011$
$D^+ \to (K^{*-}\pi^+)_A[D]\pi^+$	$0.989 \pm 0.158 \pm 0.229$	$0.013 \pm 0.004 \pm 0.004$
$D^+ \to (K^0_S(\pi^+\pi^-)_S)_A\pi^+$	$-2.935 \pm 0.060 \pm 0.125$	$0.051 \pm 0.004 \pm 0.003$
$D^+ \to ((K_S^0 \pi^-)_S \pi^+)_P \pi^+$	$1.864 \pm 0.069 \pm 0.288$	$0.022 \pm 0.003 \pm 0.003$

Amplitude Analysis of $D^+ \rightarrow K_S \pi^+ \pi^+ \pi^-$

Amplitude Analysis of $D^+ \rightarrow K_S \pi^+ \pi^+ \pi^-$

The preliminary results of branching fractions for different components :

The measurements of the decays with K1(1270) and K1(1400) involved provide some experimental information in understanding the mixture of the two excited Kaons.

Amplitude Analysis of $D_{S^+} \rightarrow \pi^+ \pi^0 \eta$

Event selected with double tag Tag modes:

 $D_{s}^{-} \to K_{S}^{0}K^{-}, D_{s}^{-} \to K^{+}K^{-}\pi^{-}, D_{s}^{-} \to K_{S}^{0}K^{-}\pi^{0}, D_{s}^{-} \to K^{+}K^{-}\pi^{-}\pi^{0}, D_{s}^{-} \to K_{S}^{0}K^{+}\pi^{-}\pi^{-}, D_{s}^{-} \to \pi^{-}\eta_{\gamma\gamma}, D_{s}^{-} \to \pi^{-}\eta_{\pi^{+}\pi^{-}\eta}^{\prime}$

Data sample for amplitude analysis:

- A multi-variate analysis is performed to suppress the background from fake η .
- The retained data sample has 1239 events with a purity of (97.7±0.5)%.

Amplitude Analysis of $D_{S^+} \rightarrow \pi^+\pi^0\eta$ Observation of $D_{S^+} \rightarrow a^0(980)^+\pi^0$

Amplitude Analysis of $D_{S^+} \rightarrow \pi^+\pi^0\eta$

First observation

The measured $\mathcal{B}(D_{S^+} \rightarrow a^0(980) + \pi^0)$ is larger than other measured pure Wannihilation decays ($D_{S^+} \rightarrow pn$, $D_{S^+} \rightarrow w\pi^+$) by one order. This provides theoretical challenge in understanding such a large W-annihilation contribution in $D \rightarrow SP$.

 $\mathcal{B}(D_s^+ \to a_0(980)^0 \pi^+)^* = 1.46 \pm 0.15_{stat.} \pm 0.22_{sys.}$

Summary

- DTag and DD^{bar} threshold data allows us to perform inclusive and exclusive branching fraction measurement
- Double tag provides clean samples for amplitude analysis
- Many D⁰ and D⁺ studies have been published, including strong phase and y_{cp} measurements, and more related measurements are on-going
- More D_s studies are on going based on our new 3.19 fb⁻¹ data at $E_{cm} = 4.178$ GeV
 - K_SK-K_LK asymmetry, amplitude analyses of KKπ, ππeta, πππ, and four-body decays, such as KKππ and πππeta