Experimental Status of Conventional Charmonium Spectroscopy

Xiongfei Wang(王雄飞) IHEP, CAS

Oct. 26, 2018, HFCPV-2018, 河南工业大学, 郑州

Outline

Introduction

- Conventional charmonium spectroscopy (CCS)
- Experimental apparatus
- Recent CCS results
 - $> J/\psi$ and $\psi(2S)$ resonance parameters
 - $\succ \chi_{cJ}(1P)$ resonance parameters
 - $> \eta_c(1S)$ resonance parameters
 - **>** Observations of *X*(3823) and *X*^{*}(3860)

■ Summary

Conventional Charmonium Spectroscopy

Nonrelativistic cc bound states

■ J/ψ (1³S₁) is the first member with $J^{PC} = 1^{--}$, other shown in right plots like $\psi(2S), \psi(1D), etc.$.

Observations are consistent with predictions from potential models and L-QCD in describing spectra & onium properties!

Experimental apparatus

BESIII experiment designed for studying in tau-c physics region (NIMA614 (2010) 345-399)

KEDR experiment designed for studying the *c*, *b* quarks and two photon physics (PPN, 2013, Vol. 44, No. 4, pp. 657–702)

The central part of the KEDR detector: vacuum chamber of the collider (1); vertex detector (2); drift chamber (3); aerogel threshold Cherenkov counters (4); time of flight counters (5); liquid krypton barrel calorim eter (6); superconductive solenoid (7), magnet yoke (8); muon chambers (9); endcap CsI calorimeter (10); com pensating coil (11).

LHCb experiment aiming for precision measurements in *b*, *c* sectors. (JINT3(2008)S08005)

Experimental apparatus

BESIII experiment designed for studying in tau-c physics region (NIMA614 (2010) 345-399)

Belle experiment designed for studying rare Bmeson decay at Y(4S) resonance (NIMA 479(2002) 117-232)

Outline

Recent CCS results \succ *I*/ ψ and ψ (2*S*) resonance parameters $\succ \chi_{cl}(1P)$ resonance parameters $\geq \eta_c(1S)$ resonance parameters \triangleright Observations of X(3823) and X^{*}(3860)

J/ ψ and $\psi(2S)$ resonance parameters

HESII KEDR

BESII Measurement of J/ψ , ψ (3686) electronic width

The process $e^+e^- \rightarrow J/\psi\gamma \rightarrow \mu^+\mu^-\gamma$ applied for J/ψ electronic width

Measurement	$\Gamma_{ee}\cdot \mathcal{B}_{\mu\mu}$ [eV]	Used $\mathcal{B}_{\mu\mu}$ value [%]	Γ_{ee} [keV]
BaBar	$330.1 \pm 7.7_{stat} \pm 7.3_{sys}$	5.88 ± 0.10 [PDG2002]	5.61 ± 0.20
CLEO-c	$338.4 \pm 5.8_{stat} \pm 7.1_{sys}$	$5.953 \pm 0.056_{stat} \pm 0.042_{svs}$ [CLEO]	$5.68 \pm 0.11_{stat} \pm 0.13_{sys}$
KEDR	$331.8\pm5.2_{stat}\pm6.3_{sys}$	5.94 ± 0.06 [PDG2008]	5.59 ± 0.12
This work	$333.4\pm2.5_{stat}\pm4.4_{sys}$	$5.973 \pm 0.007_{stat} \pm 0.037_{sys}$ [BESIII]	$5.58\pm0.05_{stat}\pm0.08_{sys}$

The process $e^+e^- \rightarrow \gamma_{ISR}\pi^+\pi^- J/\psi$ for $\psi(3686)$ electronic width with ISR method $\Gamma_{ee}^{\psi(3686)} = (2213 \pm 18_{stat} \pm 99_{sys}) \text{ eV}$

 $\Gamma_{ee}^{X(3872)}\mathcal{B}(X(3872) \to \pi^+\pi^- J/\psi) < 0.13 \text{ eV} \quad @ 90\% \ C. L.$

Measurements are consistent with the PDG values

Precise measurement of $\Gamma_{ee}(J/\psi)$

Understanding the quarkonium decay dynamics
 Scan observed cross section e⁺e⁻ → e⁺e⁻ and e⁺e⁻ → hadron in the vicinity of the J/ψ resonance. JHEP05(2018)119

 $\Gamma_{ee}(J\psi) = (5.550 \pm 0.056 \pm 0.089) keV$ $\Gamma = (92.94 \pm 1.83) keV$

*Direct measurement.

Consistent with those from other measurements, PDG value, some of predictions

BESII Precise measurement of J/ψ decay width

- Precise measurements of J/ψ decay widths provide a better understanding of the underlying physics.
- Updated with processes $e^+e^- \rightarrow e^+e^-$ and $e^+e^- \rightarrow \mu^+\mu^-$ at 15 c.m. energy points in the vicinity of the J/ ψ resonance.

(See the details for backup page)

BESIT Precise measurement of J/ψ decay width

Comparison with results from others

BESIII result is consistent with those from others.
Together with BESIII result using ISR, this result achieves the best accuracy in the world by far.

KEDR Measurement of J/ψ and $\psi(2S)$ masses

- **Based on six high precision scans of the** J/ψ **region and seven high precision** scans of $\psi(2S)$.
- Fit to the inclusive hadronic cross sections.
- Beam energy was determined using the resonance depolarization method.

Weighting of results on masses

$$\begin{split} \langle M \rangle &= \sum w_i \cdot M_i, \\ \sigma_{\text{stat}}^2 &= \sum w_i^2 \cdot \sigma_{\text{stat},i}^2, \\ \sigma_{\text{syst}}^2 &= \sum w_i^2 \cdot (\sigma_{\text{syst},i}^2 - \sigma_{\text{syst},0}^2) + \sigma_{\text{syst},0}^2, \\ w_i &= 1/(\sigma_{\text{stat},i}^2 + \sigma_{\text{syst},i}^2 - \sigma_{\text{syst},0}^2), \end{split}$$

Here $\sigma^2_{syst,0}$ denotes a common part of systematic uncertainty

Resonance parameters on masses $M_{J/\psi} = 3096.900 \pm 0.002 \pm 0.006$ MeV $M_{\psi(2S)} = 3686.099 \pm 0.004 \pm 0.009$ MeV

Consistent with PDG value within the error!

$\chi_{cI}(1P)$ resonance parameters

ESI Improvement measurement of $\Gamma_{\gamma\gamma}(\chi_{c0,2})$

• Updated with the process $\chi_{c0,2} \rightarrow \gamma \gamma$ based on $\psi(2S)$ radiative decay.

More precise measurement, consistent with the previous experimental results!
Precisely measured *R* calibrates the different theoretical potential models.

BESI Improvement measurement of $\Gamma_{\gamma\gamma}(\chi_{c0,2})$

• A helicity amplitude analysis is performed for superposition of helicityzero ($\lambda = 0$) and helicity-two ($\lambda = 2$) components for $\chi_{c2} \rightarrow \gamma \gamma$ decay.

Variables definition:

- ✓ θ_1 : polar angle of radiative photon, with respect to the direction of positron beam;
- θ_2/ϕ_2 : polar/azimuthal angle of one of photons in $\chi_{c2} \rightarrow \gamma\gamma$ process at χ_{c2} rest frame, with respect to the direction of radiative photon direction;

Two photon width ratio for
$$\chi_{c2} \rightarrow \gamma\gamma$$

 $f_{0/2} = \frac{\Gamma_{\gamma\gamma}^{\lambda=0}(\chi_{c2})}{\Gamma_{\gamma\gamma}^{\lambda=2}(\chi_{c2})} = (0.0 \pm 0.6 \pm 1.2) \times 10^{-2}$

- More precise measurement, consistent with the previous experimental results.
- Confirmed helicity-zero component highly suppressed.

LHCD THCD Measurement of $\chi_{c1,2}$ resonance parameters

Performed with observation of $\chi_{c1,2} \rightarrow J/\psi \mu^+ \mu^-$.

PRL 117,221801(2017)

. . .

An extended unbinned maximum likelihood fit

The χ_{c1,2} signals are modeled by relativistic Breit-Wigner functions with Blatt-Weisskopf form factors with a meson radius parameter of 3 GeV⁻¹.
 The orbital angular momentum between the J/ψ meson and the μ⁺μ⁻ pair is assumed to be 0 (1) for the χ_{c1}(χ_{c2})cases.

Numerical results for resonance parameters:

Quantity [MeV]	LHCb measurement	Best previous measurement	World average
$\overline{m(\chi_{c1})}$	3510.71 ± 0.10	3510.72 ± 0.05	3510.66 ± 0.07
$m(\chi_{c2})$	3556.10 ± 0.13	3556.16 ± 0.12	3556.20 ± 0.09
$\Gamma(\chi_{c2})$	2.10 ± 0.20	1.92 ± 0.19	1.93 ± 0.11

 $m(\chi_{c2}) - m(\chi_{c0}) = 45.39 \pm 0.07 \pm 0.03 \text{ MeV}$

Observations presented here open up a new avenue for hadron spectroscopy at the LHC.

- \checkmark To measure production of $\chi_{c1,2}$ states
- ✓ To extend measurements to low $p_t(\chi_{c1,2})$

$\eta_c(1S)$ resonance parameters

KEDR Measurement of $\eta_c(1S)$ resonance parameters

- **Using inclusive photon spectrum in process** $J/\psi \rightarrow \gamma \eta_c$
- Inclusive photon spectrum before/after background subtraction (a/b)
- Taking into account an asymmetric photon lineshape.

Consistent with PDG values within 1σ

Decay rate:

3×10⁻¹

Consistent with other measurements (close circles) and theoretical predictions (open circles) within the errors.

2

3

HCD Measurement of $\eta_c(1S)$ width parameter

Performed with process $B^+ \rightarrow p\overline{p}K^+$ using 3. 0 $fb^{-1}p\overline{p}$ collision data

$$\begin{split} \text{Numerical results on masses} \\ \text{M}_{J/\psi} &- \text{M}_{\eta_c(1S)} = 110.2 \pm 0.5 \pm 0.9 \text{ MeV,} \\ \text{M}_{\psi(2S)} &- \text{M}_{\eta_c(2S)} = 52.5 \pm 1.7 \pm 0.6 \text{ MeV,} \\ &\Gamma_{\eta_c(1S)} = 34.0 \pm 1.9 \pm 1.3 \text{ MeV.} \end{split}$$

 $\label{eq:Gamma-DG} \begin{array}{l} \mbox{Consistent with PDG value} \\ \Gamma^{PDG}_{\eta_c(1S)} = 31.8 \pm 0.8 \mbox{ MeV}. \end{array}$

Compared with radiative decays, these mass and width determinations do not depend on the knowledge of the line shapes of the magnetic dipole transition.

Observation of $\eta_c(2S) \to p\overline{p}$ (6.0 σ) and search for $\psi(3770)$, $X(3872) \to p\overline{p}$

Relative branching fractions: $R_{\eta_c(2S)} = (1.58 \pm 0.33 \pm 0.09) \times 10^{-2},$ $R_{\psi(3770)} < 9(10) \times 10^{-2}$ @ 90(95)% C.L., $R_{X(3872)} < 0.20(0.25) \times 10^{-2}$ @ 90(95)% C.L.

Observations of X(3823) and *X*^{*}**(3860)**

Observation of X(3823) or \psi_2(3823)

cc̄ MESONS (including possibly non-qq̄ states) $\psi_2(3823)$ was X(3823) $I^G(J^{PC}) = 0^-(2^{--})$ $\psi(3823)$ MASS 3822.2 ± 1.2 MeV $\psi(3823)$ WIDTH< 16 MeV CL=90.0%</td>

• An evidence by Belle for the first time in process $B \rightarrow \gamma \chi_{c1} K$, but not observed in $\gamma \chi_{c2}$ final state.

BESII Production cross section

PRL 115,011803(2015)

Energy dependent cross section of e⁺e⁻ → π⁺π⁻X(3823).
 Both Y(4360) and Y(4415) line shape give reasonable description.

Observation of $X^*(3860)$ or $\chi_{c0}(2P)$

PRD 95,112003(2017)

Comparison of the $X^*(3860)$ and known
charmonium-like states

		Nonresonant amplitude				
State	J^{PC}	Constant	NRQCD	M_{DD}^{-4}		
X(3915)	0++	5.2σ	4.3σ	3.3 <i>σ</i>		
X(3915)	2^{++}	6.1σ	6.1σ	4.9σ		
$\chi_{c2}(2P)$	2^{++}	6.8σ	7.0σ	6.2σ		
X(3940)	2^{++}	6.0σ	5.6σ	5.2σ		
X(4160)	0^{++}	6.8σ	6.3σ	5.8σ		
X(4160)	2^{++}	10.7σ	11.0σ	13.5σ		
$\chi_{c0}(2P)$ (lattice)	0^{++}	4.3σ	3.6 <i>o</i>	2.7σ		

2.7 σ difference from predicted $\chi_{c0}(2P)$

The X*(3860) global significance for alternative models

Model	Significance
Default (constant nonresonant)	8.5σ
NRQCD nonresonant	7.6σ
$M_{D\bar{D}}^{-4}$ nonresonant	6.5σ
Background mass calculation	8.4σ
Optimization $(a = 4)$	8.1σ
Optimization $(a = 6)$	8.1σ

Disagree with the NRQCD prediction

A new conventional charmonium candidate?

- ✓ A better candidate for $\chi_{c0}(2P)$ charmonium state than X(3915), well matched to expectation of $\chi_{c0}(2P)$ from potential model.
- ✓ Agree with $\chi_{c0}(2P)$ parameters determined from an alternative fit to Belle and BABAR:

M = 3837.6 ± 11.5 MeV Γ = 221 ± 19 MeV

✓ A conventional charmonium state above $D\overline{D}$ threshold, coincide with $\chi_{c0}(2P)$.

Summary of recent experimental status for CCS

CC	C S	Collab.		M ((MeV)	Γ _{tot} (keV)		Γ _{ll} (keV)		Γ _{ee} (keV)		COMMENT			
J/ψ		BESHI				94.3 <u>+</u>	1.9	5.64±0.09		$5,58\pm0.09$		$e^+e^- \rightarrow e^+e^-, \mu^+\mu^-$ $e^+e^- \rightarrow J/\psi\gamma \rightarrow \mu^+\mu^-\gamma$ $e^+e^- \rightarrow e^+e^-$ (hadron)			
		KEDR		3096.9	00±0.006	92 . 94 ±	92.94 ± 1.83		5.550 ± 0.1		.05 Inclusive hadronic m		ode		
	PDG			3096.9	00±0.006	92.9 <u>+</u> 2.8						PDG AVERAGE			
		BESH	I	I						2.213±0 .1	.00	$00 \qquad e^+e^- \to \gamma_{ISR}\pi^+\pi^- J/\psi$			
ψ (2	2 <i>S</i>)	KEDF	KEDR 3686.0		09±0.098							Inclusive hadronic mode			
		PDG		3686.0	09 <u>+</u> 0. 098	29 6-	-8					PDG AVERAGE			
		CCS	CCS Collab.		M(Me	V)	Γ((MeV)	Ι	' _{γγ} (keV)		COMMENT			
		В		ESIII					2	.03±0. 16	ψ ($(3686) \rightarrow \gamma \chi_{c0}, \chi_{c0} \rightarrow \gamma \gamma$			
		χ _{c0}	χ _{c0}	Χ _{c0}	I	LHCb									
	η_c			PDG	3414.75 <u>-</u>	<mark>⊦ 0.31</mark>	10 .	5 <u>+</u> 0. 6				PDG AVERAGE			
		X _{c1}	X _{c1}	B	ESIII		-		<5.3 ×		5.3 ×10 ⁻³	ψ($(3686) \rightarrow \gamma \chi_{c0}, \chi_{c0} \rightarrow \gamma \gamma$	E	
	X (3			X _{c1}	X _{c1}	1	LHCb	3510.71 <u>-</u>	± 0.14						$\chi_{c1,2} \rightarrow J/\psi \mu^+ \mu^-$
C	Dr ψ			PDG	3510.66 <u>-</u>	<mark>± 0.07</mark>	0.8 4	<mark>ŀ ± 0.04</mark>				PDG AVERAGE	c1		
	V * (1		B	ESIII					2	2.03±0.16		$(3686) \rightarrow \gamma \chi_{c0}, \chi_{c0} \rightarrow \gamma \gamma$	E.		
C	\mathbf{X} (.) Or $\boldsymbol{\chi}$	X _{c2}	I	LHCb	3556.10 <u>-</u>	± 0.13	2.10	0 ± 0. 20				$\chi_{c1,2} \rightarrow J/\psi \mu^+ \mu^-$			
	<i>x</i>			PDG	3556.20 <u>-</u>	<mark>⊦ 0.09</mark>	1.93	<mark>8 ± 0.11</mark>				PDG AVERAGE	E		

Tables summarize more precise measurement, consistent with PDG average!

Summary of recent experimental status for CCS

CCS	Collab) .	N	I(MeV)	Γ _{tot} (keV	/)	Γ _{ll} (keV)		Γ _{ee} (keV)		COMMENT						
J/ψ	BESHI				94.3 <u>+</u> 1.	.9	5.64±0.09	Ę	5. 58 ± 0. 09	$e^+e^- \rightarrow e^+e^-, \mu^+\mu^-$ $e^+e^- \rightarrow f/\psi\gamma \rightarrow \mu^+\mu^-\gamma$ $e^+e^- \rightarrow e^+e^-$ (hadron)							
	KEDR		3096.	900±0.006	92 . 94 ± 1.	. 83	5.55		5.550 <u>±</u> 0. 105	J	Inclusive hadronic mode						
	PDG		3096.	900 <u>+</u> 0. 006	92.9 <u>+</u> 2.8						PDG AVERAGE						
	BESH	I						2	2.213±0.100		$e^+e^- o \gamma_{ISR}\pi^+\pi^- J/\psi$						
ψ (2 <i>S</i>)	KEDI	KEDR 3686		009±0.098						1	Inclusive hadronic mode						
	PDG		3686.	009 <u>+</u> 0. 098	296 ±8	3					PDG AVERAGE						
C	CS Colla		ollab.	M(MeV)		Γ (MeV)		$\Gamma^{0}_{\gamma\eta_{c}}(\text{keV})$		COMMENT							
	(1S) KEDR		EDR 2983.5±1		$1.4^{+1.6}_{-3.6}$ 27.2 ± 3.		$7.2 \pm 3.1^{+5.4}_{-2.6}$		2.98 ± 0.18	$B^{+0.15}_{-0.33}$	$J/\psi o \gamma \eta_c$						
η_c			$\eta_c(1S)$ LH		HCb			34		3			$B^+ \rightarrow p\overline{p}K^+$				
		PDG		2983.4 ± 0.5			31.8 . ±0.8				PDG AVERAGE						
	823) (3823) BESIII PDG		elle 3823.1 \pm 1.8 \pm		< 24				$B \to \gamma \chi_{c1} K$								
X(3) Or $\psi_2($			(3823) BI (3823)		X(3823) Or $\psi_{2}(3823)$		X(3823) or $\psi_2(3823)$ BESI		ESIII	3821 .7 ± 1	3 ± 0.7		< 16				$e^+e^- \rightarrow \pi^+\pi^-\gamma\chi_{c1}$
r 20			DG	3822. 2 <u>-</u>	2 ± 1. 2		< 16				PDG AVERAGE						
<i>X</i> [*] (3	860)	H	Belle	3862 ⁺² ₋₃	6+40 2-23		$201^{+154+88}_{-67-82}$				$e^+e^- \rightarrow J/\psi D\overline{D}$						
Or χ_c	₀ (2P)	P	PDG								PDG AVERAGE						

Tables summarize more precise measurement, consistent with PDG average!

Summary

Lots of progress in the study of conventional charmonium states at BESIII, Belle, KEDR and LHCb, recently.

> Precise/improved measurements:

- $\checkmark J/\psi$ and $\psi(2S)$ resonance parameters
- $\checkmark \chi_{cl}(1P)$ resonance parameters
- $\checkmark \eta_c(1S)$ resonance parameters
- > Observations of $\psi(1^3D_2)=X(3823)$ and $\chi_{c2}(2P)=X^*(3860)$

BESIII/Belle/KEDR/LHCb will continue the study, Belle II at KEK will start data taking very soon.

Thanks for your attention!

Backup

To consider:

Correlations between measured cross sections of the same channel at different energy points;
 Correlations between measured cross sections of different channels at the same energy point,

a global χ^2 function is constructed:

$$\chi^2 = \Delta \sigma^T \cdot V^{-1} \cdot \Delta \sigma$$

where

$$\Delta\sigma(i) = \begin{cases} \sigma_{ee}^{exp}(i) - \sigma_{ee}^{the}(i) & i = 1 - 15\\ \sigma_{\mu\mu}^{exp}(i - 15) - \sigma_{\mu\mu}^{the}(i - 15) & i = 16 - 30 \end{cases}$$

and

$$V(i,j) = \begin{cases} V_{ee}(i,j) + \delta(i-j)(\frac{d\sigma_{ee}^{the}}{dW_0}(i)\Delta W_0(i))^2 & i = 1 - 15, j = 1 - 15 \\ \frac{\sigma_{ee}^{exp}(i)\sigma_{\mu\mu}^{exp}(j-15)}{L(i)L(j-15)}V_L(i,j-15) + \delta(i+15-j)\frac{d\sigma_{ee}^{the}}{dW_0}(i)\frac{d\sigma_{\mu\mu}^{the}}{dW_0}(i)(\Delta W_0(i))^2 & i = 1 - 15, j = 16 - 30 \\ \frac{\sigma_{ee}^{exp}(j)\sigma_{\mu\mu}^{exp}(i-15)}{L(i-15)L(j)}V_L(i-15,j) + \delta(i-j-15)\frac{d\sigma_{ee}^{the}}{dW_0}(j)\frac{d\sigma_{\mu\mu}^{the}}{dW_0}(j)(\Delta W_0(j))^2 & i = 16 - 30, j = 1 - 15 \\ V_{\mu\mu}(i-15,j-15) + \delta(i-j)(\frac{d\sigma_{\mu\mu}^{the}}{dW_0}(i-15)\Delta W_0(i-15))^2 & i = 16 - 30, j = 16 - 30 \end{cases}$$

Decay width extraction — Formulas and parameters

• Analytical formulas for resonance terms and interference terms of cross sections of $e^+e^- \rightarrow e^+e^-$ and $e^+e^- \rightarrow \mu^+\mu^-$ with ISR considered are carefully derived ¹ with structure function method ²

$$\sigma(s,\cos heta) = \int ar{\sigma}(s(1-x),\cos heta)F(s,x)dx$$

• The energy spread effect is described by gauss distribution

$$\sigma'(W_0) = \int \sigma(W) \left(\frac{1}{\sqrt{2\pi}\sigma_W} \exp^{-\frac{(W-W_0)^2}{2\sigma_W^2}} \right) dW$$

• The FSR factor $R^{FSR}(W_0)$ are obtained via numerical method with the Babayaga generator as the ratio of the calculated cross sections with the FSR switch therein turned on and off. With it

$$\sigma^{the}(W_0) = \sigma'(W_0) \cdot R^{FSR}(W_0)$$

• The final function form of the theoretical cross section formula:

$$\sigma_{II}^{the} = \sigma_{II}^{the}(W_0, M, \Gamma_{tot}, \Gamma_{ee}\Gamma_{II}/\Gamma_{tot}, \sqrt{\Gamma_{ee}\Gamma_{II}}, \sigma_W) \text{ with } II = ee \text{ or } \mu\mu$$

• $\Gamma_{ee}\Gamma_{ee}/\Gamma_{tot}$ and $\Gamma_{ee}\Gamma_{\mu\mu}/\Gamma_{tot}$ can be obtained by measuring these cross sections and then fitting them.

• Combined $B(J/\psi \rightarrow l^+l^-) = \Gamma_{ll}/\Gamma_{tot}$ measured by our BESIII collaboration in 2013 ³, Γ_{tot} and Γ_{ll} can be obtained from $\Gamma_{ee}\Gamma_{ee}/\Gamma_{tot}$ and $\Gamma_{ee}\Gamma_{\mu\mu}/\Gamma_{tot}$ by parameter transformation.

¹X.Y. Zhou, Y.D. Wang, L.G. Xia, Analytical Forms of Cross Sections of Di-lepton Production from e^+e^- Collision around the J/ψ Resonance, arXiv:1701.00218.

²E.A. Kuraev, V.S. Fadin, Sov. J. Nucl. Phys., 41 (1985) 466.

³M. Ablikim, et al., BESIII Collaboration, Phys. Rev. D 88 (2013) 032007 🗆 🕨 🛯 🗖 🕨 🛯 🗮 🕨 🚊 🖉 🔍 🖓

Improvement measurement of $\chi_{c0,2}$ two-photon width **Validate reliability of background function.**

FIG. 2. Background $E(\gamma_1)$ spectrum. Upper plot: The best fit result (blue solid line) to $\psi(3770)$ data (dots with error bar) using Eq. (2). Lower plot: The comparison of $E(\gamma_1)$ spectrum between off- $\psi(3686)$ data (dots with error bar) and $\psi(3770)$ data (red histogram).

Measurement of $\chi_{c1,2}$ resonance parameters at LHCb

FIG. 2. Background-subtracted $m(\mu^+\mu^-)$ distribution for $\chi_{c1} \rightarrow J/\psi \ \mu^+\mu^-$ (solid red circles) and $\chi_{c2} \rightarrow J/\psi \ \mu^+\mu^-$ (open blue squares) decays. The distributions are normalized to the unit area. The curves show the expected distribution from the simulation, which uses the model described in Ref. [29].

Observation of $X^*(3860)$ or $\chi_{c0}(2P)$

FIG. 5. Projections of the background fit results onto $M_{D\bar{D}}$ and angular variables. The points with error bars are data, and the solid line is the fit result.