

H->WW branch ratio measurement with e⁺e⁻->ZH->vvqqqq

Tong Li, Lianliang Ma Shandong University 2018.04.19

Introduction

Comparisons of variable distributions between 3.5T and 3.0T were presented in my previous talk. All of the variables are well consistent.

https://indico.ihep.ac.cn/event/7847/contribution/3/material/slides/0.pdf

Updates

Cut flow tables of 3.5T and 3.0T samples.

 Distributions of variables after all cuts applied previous than the corresponding variables.

Total efficiency of signal and background, expected accuracy.

Cut flow table in Note (3.5T)

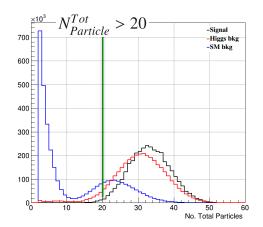
75 GeV/
$$c^2 < M_{Mis} < 150$$
 GeV/ c^2
100 GeV/ $c^2 < M_{Tot} < 150$ GeV/ c^2
20 GeV/ $c < p_T < 80$ GeV/ c

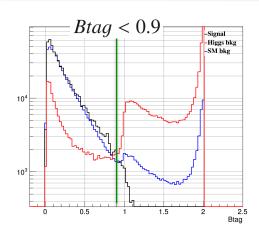
Category	Signal	ZH background	SM background
Category	Signai	ZH background	
Total	23938	208200	21314314
Validation of pre-selection	20405	143765	3166923
$N_{Particle}^{Tot} > 20$	19681	124112	537839
Btag < 0.9	19349	28857	477099
$Cos\theta_{2jets} > 0.87$	19298	28673	433563
$\Sigma M_{Inv}^{2jet} > 50 \text{ GeV}$	18621	14793	309919
$Y_{34} > 0.005$	15183	6919	122866
Combined Variable	9022	3075	38226

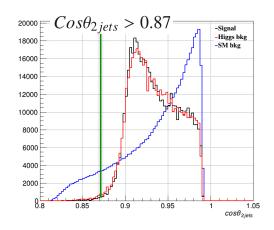
^{• 65} GeV/ $c^2 < M_{Inv}^{Real4jet} < 85 \text{ GeV}/c^2$,

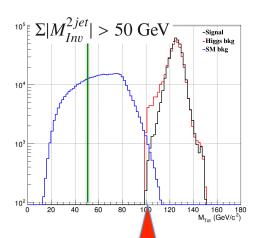
$$\bullet \ \ M_{Inv}^{Virt4jet} > -7/3 \dot{M}_{Inv}^{Real4jet} + \tfrac{605}{3} \ \mathrm{GeV}/c^2,$$

^{• 15} GeV/ $c^2 < M_{Inv}^{Virt4jet} < 50 \text{ GeV}/c^2$,


Results in Note (3.5T) and my results (3.5T)

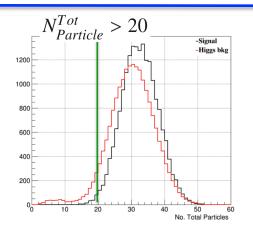

Relative efficiencies showed differences (in red) but they will be consistent when we combined these 2 steps. Efficiencies of SM bkg (in blue) are the same.

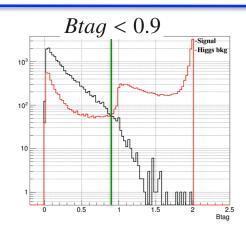

Ì	Note					
	Signal	efficiency	Higgs bkg	efficiency	SM bkg	efficiency
Total	23938		208200		21314314	
Validation of pre-selection	on 20405	0.852	143765	0. 691	3166923	0. 149
$N_{Particle}^{Tot} > 20$	19681	0.965	124112	0.863	537839	0. 170
Btag < 0.9	19349	0. 983	28857	0. 233	477099	0.887
$Cos\theta_{2jets} > 0.87$	19289	0. 997	28673	0. 994	433563	0. 909
$\Sigma M_{Inv}^{2jet} > 50 \text{ GeV}$	18621	0. 965	14793	0. 516	309919	0. 715
$Y_{34} > 0.005$	15183	0.8150.7	6919	0.4680.24	122866	0. 396
Combined Variable	9022	0. 594	3075	0. 444	38226	0. 311

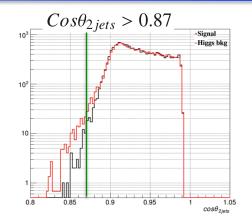

	My 3.5T					
	Signal	efficiency	Higgs bkg	efficiency	SM bkg	effciency
Total	24889		222278		22687012	
Validation of pre-selection	on 20454	0.822	144169	0. 649	3528746	0. 156
$N_{Particle}^{Tot} > 20$	19729	0. 965	124341	0.862	537839	0. 152
Btag < 0.9	19390	0. 983	28954	0. 233	477099	0.887
$Cos\theta_{2jets} > 0.87$	19336	0. 997	28761	0. 993	433563	0. 909
$\Sigma M_{Inv}^{2jet} > 50 \text{ GeV}$	19336	1.000	28761	1.000	309919	0.715
$Y_{34} > 0.005$	15399	0. 796	7344	0. 255	122866	0. 396
Combined Variable	9151	0. 594	4025	0. 548	38226	0.311

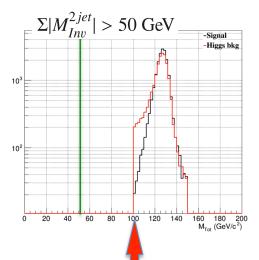
Variable distributions after all previous cuts (3.5T)

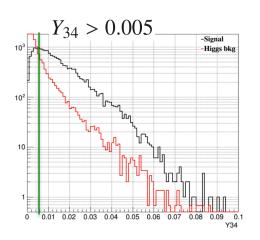
Cut flow table of 3.0T samples


-				
	3. OT			
	Signal	efficiency	Higgs bkg	efficiency
Total	23675		211307	
Validation of pre-selection	18894	0. 798	134785	0.638
$N_{Particle}^{Tot} > 20$	18404	0. 974	118963	0.883
Btag < 0.9	18048	0. 981	26928	0. 226
$Cos\theta_{2jets} > 0.87$	18006	0. 998	26710	0. 992
$\Sigma M_{Inv}^{2jet} > 50 \text{ GeV}$	18006	1.000	26710	1.000
$Y_{34} > 0.005$	14426	0.801	6834	0. 256
Combined Variable	8607	0. 597	2999	0. 439


The SM bkg is still 3.5T.


Efficiencies in 2 tables are well consistent.


My 3.5T					
Signal	efficiency	Higgs bkg	efficiency	SM bkg	effciency
24889		222278		22687012	
n 20454	0.822	144169	0.649	3528746	0. 156
19729	0. 965	124341	0.862	537839	0. 152
19390	0. 983	28954	0. 233	477099	0.887
19336	0. 997	28761	0. 993	433563	0. 909
19336	1.000	28761	1.000	309919	0. 715
15399	0. 796	7344	0. 255	122866	0. 396
9151	0. 594	4025	0. 548	38226	0. 311
	24889 n 20454 19729 19390 19336 19336 15399	Signal efficiency 24889 n 20454	Signal efficiency Higgs bkg 24889 222278 1 20454 0.822 144169 19729 0.965 124341 19390 0.983 28954 19336 0.997 28761 19336 1.000 28761 15399 0.796 7344	Signal efficiency Higgs bkg efficiency 24889 222278 222278 1 20454 0.822 144169 0.649 19729 0.965 124341 0.862 19390 0.983 28954 0.233 19336 0.997 28761 0.993 19336 1.000 28761 1.000 15399 0.796 7344 0.255	Signal efficiency Higgs bkg efficiency SM bkg 24889 222278 22687012 1 20454 0.822 144169 0.649 3528746 19729 0.965 124341 0.862 537839 19390 0.983 28954 0.233 477099 19336 0.997 28761 0.993 433563 19336 1.000 28761 1.000 309919 15399 0.796 7344 0.255 122866


Variable distributions after all previous cuts (3.0T)

Results

• Note:

$$N_{Sig} = 9022 \pm 224$$

Accu. =
$$\sqrt{(S+B)/S} = 2.5\%$$

• My 3.5T:

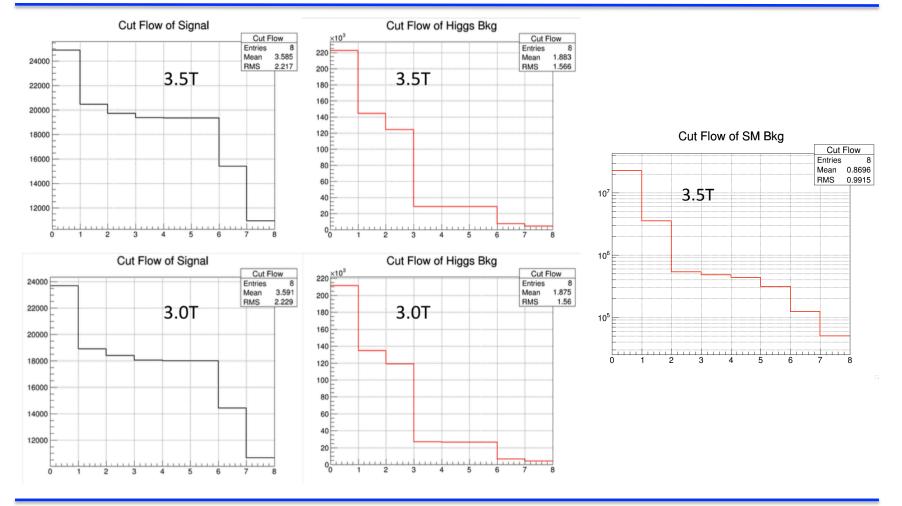
$$N_{Sig} = 9151 \pm 227$$

Signal efficiency = 36.8%

ZH bkg efficiency = 1.81%

Accu. =
$$\sqrt{(S+B)/S} = 2.5\%$$

• 3.0T:


$$N_{Sig} = 8607 \pm ----$$

Accu. =
$$\sqrt{(S+B)/S}$$
 = ----

Now we have 2 new students who will join the effort.

backup

Cut flow plots

Results in Note (3.5T) and my results (3.5T)

	Note					
	Signal	efficiency	Higgs bkg	efficiency	SM bkg	efficiency
Total	23938		208200		21314314	
Validation of pre-selection	on 20405	0.852	143765	0.691	3166923	0. 149
$N_{Particle}^{Tot} > 20$	19681	0. 965	124112	0.863	537839	0. 170
Btag < 0.9	19349	0. 983	28857	0. 233	477099	0.887
$Cos\theta_{2jets} > 0.87$	19289	0. 997	28673	0. 994	433563	0. 909
$\Sigma M_{Inv}^{2jet} > 50 \text{ GeV}$	18621	0. 965	14793	0. 516	309919	0. 715
$Y_{34} > 0.005$	15183	0.8150.7	6919	0. 4680.24	122866	0. 396
Combined Variable	9022	0. 594	3075	0. 444	38226	0. 311

	My 3.5T					
	Signal	efficiency	Higgs bkg	efficiency	SM bkg	effciency
Total	24889		222278		22687012	
Validation of pre-selecti	on 20454	0.822	144169	0.649	3528746	0. 156
$N_{Particle}^{Tot} > 20$	19729	0. 965	124341	0.862	537839	0. 152
Btag < 0.9	19390	0. 983	28954	0. 233	477099	0.887
$Cos\theta_{2jets} > 0.87$	19336	0. 997	28761	0. 993	433563	0. 909
$\Sigma M_{Inv}^{2jet} > 50 \text{ GeV}$	19336	1.000	28761	1.000	309919	0. 715
$Y_{34} > 0.005$	15399	0. 796	7344	0. 255	122866	0. 396
Combined Variable	9151	0. 594	4025	0. 548	38226	0. 311