

Extrapolation from 250GeV to 240GeV

Kaili

2018.07.05

Cross Section current

Cross Section, 250GeV cited from Moxin's note on cepcdoc and 240GeV calculated by Gang in Whizard 1.9.5

				1
Туре	250 GeV	240 GeV	Ratio	Ratio=250GeV/240GeV;
	Signal (fb)			
Total	212.13	200.66	96.0%	Technical issue makes a difference in Total Cx and Sum Cx.
Sum	214.13	203.65	95.1%	
eeH	7.60	7.05	92.8%	These 5 channels conclude fusion.
mmH	7.10	6.77	95.4%	
ττΗ	7.08	6.75	95.3%	
vvH	48.96	46.32	94.6%	
qqH	143.39	136.76	95.4%	Calculated by e1e1h-e2e2h, n1n1h-
eeH(ZZ fusion)	0.63	0.28	44.4%	n2n2h. (Ignore the interference) WW fraction from 14%(250GeV) to
vvH(WW fusion)	6.85	6.19	90.3%	13.3%(240GeV).
				Add all the interferences to vvH

Add all the interferences to vvH would underestimate 250GeV result, and overestimate 240GeV result.

bkg Cross Section

Туре	250 GeV	240 GeV	Ratio											
	2 fermion													
e+e-	24992.2	24770.9	99.1%											
µ+µ-	4991.9	5332.7	106.8%											
T+T-	4432.2	4752.9	107.2%											
VV	53598.4	54099.5	100.9%											
veve	45390.8	45390.8	λ.											
νμνμ	4416.3	4416.3	λ											
VTVT	4410.3	4410.3	λ											
qq	50105.4	54106.9	108.0%											
uu	10110.4	10899.3	107.8%											
dd	10010.1	10711.0	107.0%											
СС	10102.8	10862.9	107.5%											
SS	9924.4	10737.8	108.2%											
bb	9957.7	10769.8	108.2%											

Туре	250 GeV	240 GeV	Ratio	Туре	250 GeV	240 GeV	Ratio			
	4 fermior			4 fermion						
sw_l0mu	429.8	436.7	101.60%	zz_h0cc_nots	95.7	99.0	103.4%			
sw_l0tau	429.8	435.9	101.40%	zz_h0dtdt	225.3	233.5	103.6%			
sw_sl0qq	2583.6	2612.6	101.10%	zz_h0utut	82.8	85.7	103.5%			
sze_l0e	82.5	78.5	95.20%	zz_h0uu_notd	95.6	98.6	103.1%			
sze_l0mu	0	845.8	\	zz_l04mu	14.5	15.6	107.3%			
sze_l0nunu	29.6	28.9	97.90%	zz_l04tau	4.4	4.6	105.3%			
sze_l0tau	150.3	147.3	98.00%	zz_l0mumu	18.2	19.4	106.7%			
sze_sl0dd	128.7	125.8	97.70%	zz_l0taumu	17.6	18.7	106.3%			
sze_sl0uu	195.9	190.2	97.10%	zz_l0tautau	9.2	9.6	104.6%			
szeorsw_l0l	249.8	249.5	99.90%	zz_sl0mu_down	127.8	136.1	106.5%			
sznu_l0mumu	43.2	43.4	100.50%	zz_sl0mu_up	82.5	87.4	106.0%			
sznu_l0tautau	14.6	14.6	99.70%	zz_sl0nu_down	135.2	139.7	103.4%			
sznu_sl0nu_down	91.4	90	98.60%	zz_sl0nu_up	81.8	84.4	103.1%			
sznu_sl0nu_up	56.1	55.6	99.10%	zz_sl0tau_down	_down 64.4		104.6%			
ww_h0ccbs	5.7	5.9	102.80%	zz_sl0tau_up	39.8	41.6	104.5%			
ww_h0ccds	165.8	170.2	102.70%	zzbosons	1066.4	1110.4	104.1%			
ww_h0cuxx	3395.6	3478.9	102.50%	zzorww_h0cscs	1565.4	1607.6	102.7%			
ww_h0uubd	0.1	0.1	100.00%	zzorww_h0udud	1572.9	1610.3	102.4%			
ww_h0uusd	166.6	170.5	102.30%	zzorww_l0mumu	214.7	221.1	103.0%			
ww_l0ll	393.9	403.7	102.50%	zzorww_l0tautau	205.4	211.2	102.8%			
ww_sl0muq	2366.4	2423.4	102.40%							
ww_sl0tauq	2362.3	2423.6	102.60%				.]			
wwbosons	16218.2	16721.8	103.10%	\exists In most channels the dominant						

bkg is 4 fermion; 3%

bkg extrapolation

- Most channel use bkg +3%
 - 4 fermion bkg dominant; 2 fermion are reducible after selection
- Except:
 - Z->qq/vv, H->bb/cc/gg: 2f:4f=3:1; +4%;
 - As well as Z->qq, H->vvvv; (Not in H->WW->4q; 4f dominant, +3%;)
 - H->mm Z->qq/vv, : zz_l04mu, +6%;
 - H->mm Z->mm: zz_sl0mu_down/up, +7%;
 - H->yy 2fermion;
 - Z->mm: +7%; Z->qq: +8%; Z->vv: +1%;

Signal extrapolation

- For all ZH events,
 - eeH: -7.2%;
 - mmH: -4.6%
 - qqH: -4.6%
 - vvH: -5.6%
- For $vvH, H \rightarrow bb$,
 - use the weight after selection by Liang Hao
 - WW fusion process: *0.971537
 - ZH process: *1.013535
 - SM bkg: *1.052864

bb/cc/gg

$$\Delta = \frac{\Delta \sigma_{240} - \Delta \sigma_{250}}{\Delta \sigma_{250}}$$

bb 0.28% take wwf events

as ZH; if not, 0.32%;

g	Si	gnal	250					
0	Z	Н	250	240	Difference			
50			H->qq					
50		bb	1.30%	1.35%	3.85%			
	ee	СС	11.78%	12.35%	4.84%			
		gg	6.17%	6.51%	5.51%			
		bb	1.00%	1.03%	3.00%			
	μμ	СС	9.44%	9.77%	3.50%			
		gg	4.90%	5.08%	3.67%			
		bb 0.48% 0.49%			2.08%			
	qq	СС	11.73%	12.45%	6.14%			
		gg	3.68%	3.94%	7.07%			
		bb	0.41%	0.41%	2.32%			
	vv	СС	3.90%	4.10%	5.13%			
		gg	1.54%	1.61%	4.55%			
		v	vH(WW fu	usion)				
	vvH	bb	3.11%	3.22%	3.54%			
	zh	bb	0.32%	0.32%	1.82%			
			ZH					
		bb	0.28%	0.29%	3.22%			
	Z	СС	3.30%	3.45%	4.55%			
		gg	1.31%	1.37%	4.65%			

WW/ZZ

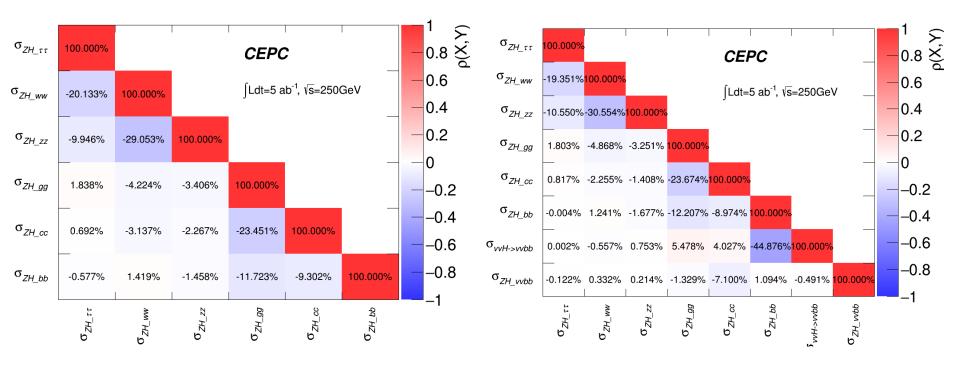
Si	gnal	250	240	Difference							
Z	Н	230 240		Difference							
H->WW											
	lvlv	9.36%	9.79%	4.59%							
ee	evqq	4.57%	4.77%	4.38%							
	μνqq	3.95%	4.10%	3.80%							
	lvlv	7.35%	7.54%	2.59%							
μμ	evqq	4.01%	4.07%	1.50%							
	μνqq	3.97%	4.07%	2.52%							
	qqqq	2.03%	2.14%	5.42%							
vv	evqq	4.69%	4.89%	4.26%							
VV	μνqq	4.18%	4.35%	4.07%							
	lvlv	11.30%	11.60%	2.65%							
qq	qqqq	1.84%	1.93%	4.89%							
		H->2	ZZ								
VV	μμqq	7.96%	8.21%	3.14%							
VV	eeqq	39.50%	42.19%	6.81%							
μμ	vvqq	7.38%	7.56%	2.44%							
ZH	l bkg	10.01%	10.40%	3.85%							
		ZF	1								
7	WW	1.05%	1.07%	2.35%							
Z	ZZ	5.12%	5.21%	1.82%							

Kaili Zhang

Oth

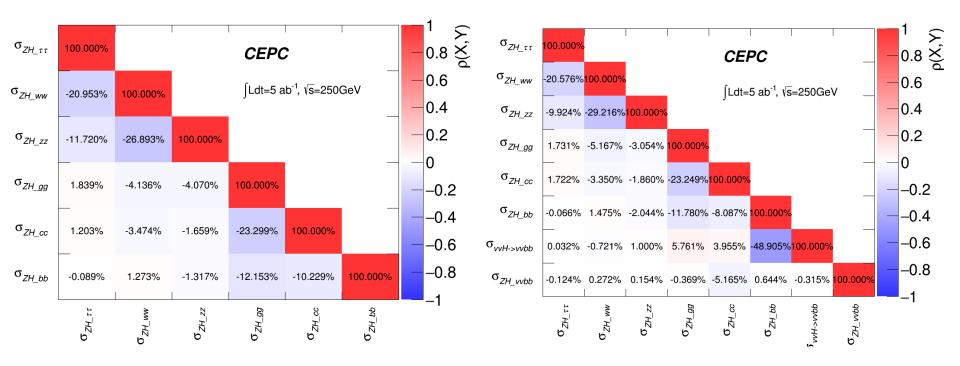
	c:	anal						
Others	Signal Z H		250	240	Difference			
	H->Invisible							
	qq		220.00%	235.00%	6.82%			
	ee		325.00%	349.00%	7.38%			
	μμ	ZZ(vvvv)	229.00%	250.00%	9.17%			
	Tot		150.24%	159.88%	6.42%			
			Н→γ	γ				
	μμ+ττ		41.10%	44.11%	7.32%			
	vv		10.90%	11.45%	5.05%			
	qq	<u></u> ΥΥ	10.40%	11.20%	7.69%			
	Tot		7.38%	7.87%	6.69%			
		Η→μμ						
	qq		17.75%	18.70%	5.40%			
	ee		61.38%	64.71%	5.42%			
	μμ	μμ	86.10%	90.74%	5.39%			
	vv		53.32%	56.93%	6.77%			
	Tot		15.90%	16.84%	5.91%			
			H→τ	τ				
Use Dan's result in ee and mm; Due to the better significance in v4.	ee		2.72%	2.69%	-1.10%			
Due to the better significance in V4.	μμ		2.26%	2.21%	-2.21%			
	qq	ττ	0.93%	0.97%	4.30%			
	vv		3.11%	3.30%	6.11%			
	Tot		0.79%	0.82%	3.06%			

Result

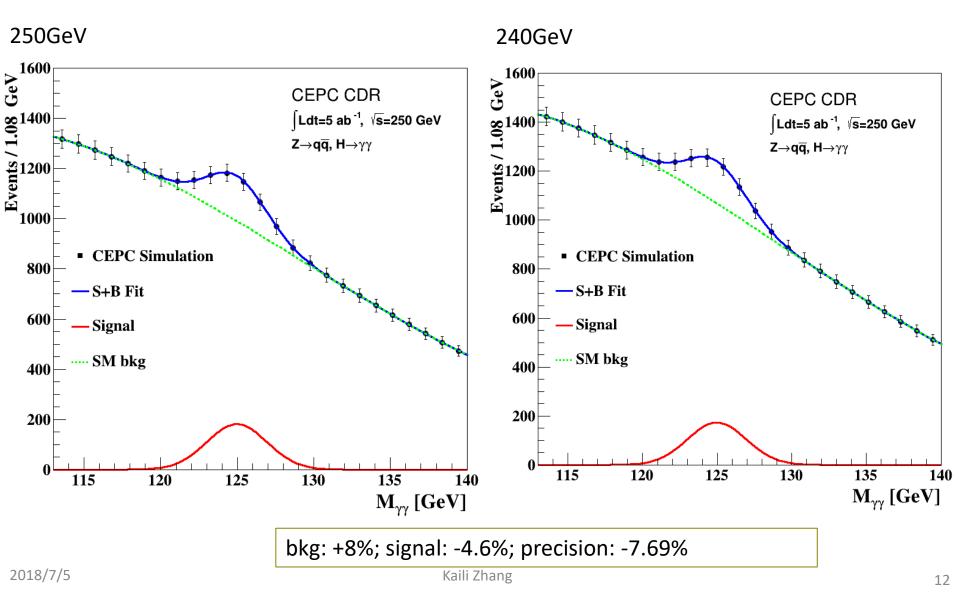


	250GeV	240GeV	Difference
$\sigma(ZH)$	0.50%	0.50%	١
$\sigma(ZH)*Br(H\to bb)$	0.28%	0.29%	3.22%
$\sigma(ZH) * Br(H \to cc)$	3.30%	3.45%	4.55%
$\sigma(ZH) * Br(H \to gg)$	1.31%	1.37%	4.65%
$\sigma(ZH) * Br(H \rightarrow WW)$	1.05%	1.07%	2.35%
$\sigma(ZH) * Br(H \to ZZ)$	5.12%	5.21%	1.82%
$\sigma(ZH)*Br(H\to\tau\tau)$	0.79%	0.82%	3.06%
$\sigma(ZH) * Br(H \to \gamma \gamma)$	7.38%	7.87%	6.69%
$\sigma(ZH) * Br(H \to \mu\mu)$	15.9%	16.8%	5.91%
$\sigma(\mathrm{vv}H) * Br(H \to \mathrm{bb})$	3.11%	3.22%	3.54%
$Br_{upper}(H \rightarrow inv.)$	0.42%	0.44%	6.42%
$\sigma(ZH) * Br(H \to Z\gamma)$	4σ	4σ	١

250GeV Correlation


To avoid the overlap in b/c/g/w/z, current correlation between them are simplified.

240GeV Correlation



To avoid the overlap in b/c/g/w/z, current correlation between them are simplified.

qqyy plot

10 <i>ĸ</i>	240GeV	250GeV	Pre_CDR
κ _b	1.70%	1.63%	1.3%
κ _c	2.37%	2.28%	1.7%
$\kappa_{ m g}$	1.74%	1.68%	1.5%
κ_{γ}	4.27%	4.01%	4.7%
$\kappa_{ au}$	1.63%	1.57%	1.4%
$\kappa_{\rm Z}$	0.25%	0.25%	0.26%
$\kappa_{ m W}$	1.49%	1.43%	1.2%
κ_{μ}	8.59%	8.13%	8.6%
Br _{inv}	0.44%	0.42%	0.28%
Γ_{H}	3.38%	3.26%	2.8%

7κ	240GeV	250GeV	Pre_CDR
κ _b	1.62%	1.55%	1.3%
κ _c	2.37%	2.28%	1.7%
κ _g	1.71%	1.64%	1.5%
κ_{γ}	4.24%	3.99%	4.7%
κ _l	1.56%	1.49%	1.4%
$\kappa_{\rm Z}$	0.16%	0.16%	0.26%
$\kappa_{ m W}$	1.46%	1.40%	1.2%

0

СЕР

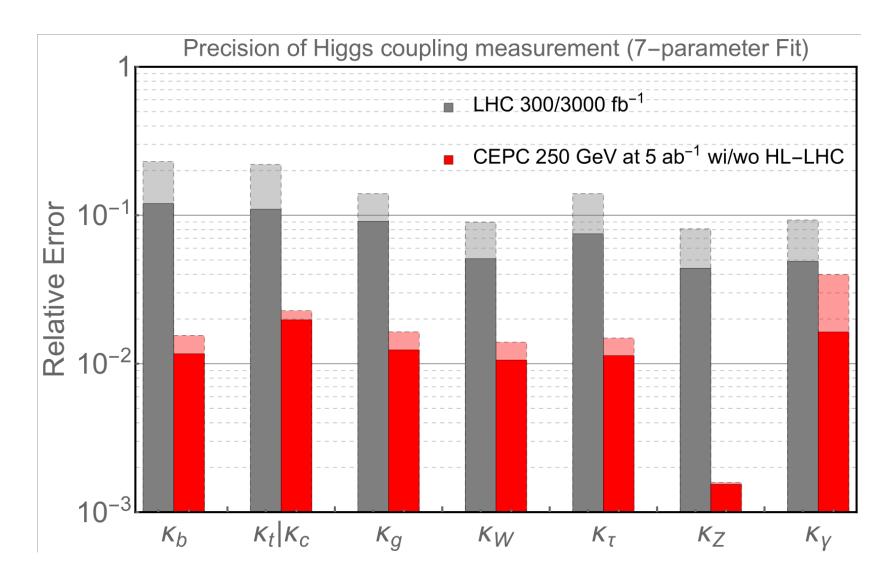
In white paper:

250GeV

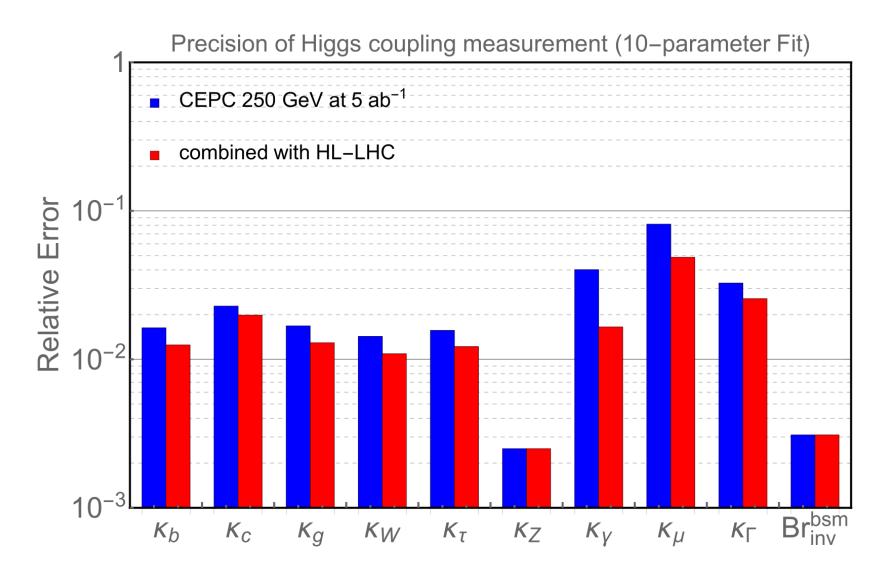
240GeV

	10-pa	rameter fit	7-par	ameter fit		10-pa	rameter fit	7-par	ameter fit
	CEPC	+HL-LHC	CEPC	CEPC +HL-LHC -		CEPC	+HL-LHC	CEPC	+HL-LHC
Γ_h	3.4	2.6	_	_	Γ_h	3.3	2.6	_	
κ_b	1.7	1.3	1.6	1.2	κ_b	1.6	1.3	1.6	1.2
κ_c	2.4	2.0	2.3	2.0	κ_c	2.3	2.0	2.4	2.0
κ_g	1.7	1.3	1.6	1.6 1.2		1.7	1.3	1.7	1.3
κ_W	1.5	1.1	1.4	1.1	$rac{\kappa_g}{\kappa_W}$	1.4	1.1	1.5	1.1
$\kappa_{ au}$	1.6	1.2	1.5	1.1	$\kappa_{ au}$	1.6	1.2	1.6	1.2
κ_Z	0.25	0.25	0.16	0.15	κ_Z	0.25	0.25	0.16	0.16
κ_{γ}	4.3	1.7	4.0	1.6	κ_γ	4.0	1.7	4.2	1.7
κ_{μ}	8.6	5.0	_			8.1	4.9	_	_
$\mathrm{BR}_{\mathrm{inv}}$	0.31	0.31	_	_	$\mathrm{BR}_{\mathrm{inv}}$	0.31	0.31	_	_

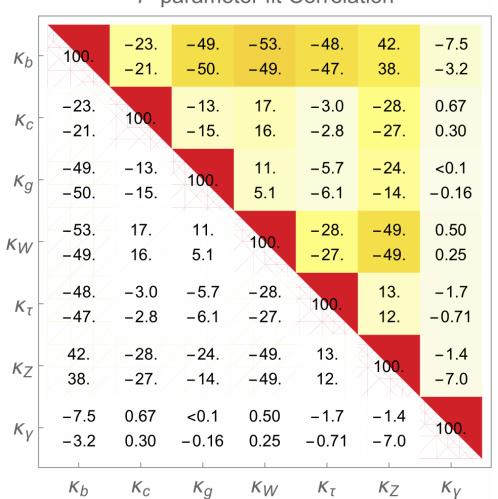
κ explaination


- $Z \to \mu\mu, H \to \tau\tau$ channel, the μ will be $\kappa_Z^2 \kappa_\tau^2 / \Gamma_H$; For $\nu\nu H \to bb, (\kappa_W^2 \kappa_b^2) / \Gamma_H$;
 - Γ_H occurs everywhere;
- Best measurements are κ_b , κ_z . $\sigma(ZH) = 0.5\%$ constrain $\sigma(\kappa_z)$ to 0.25%.
 - Also, κ_z occurs anywhere in ZH processes. And those κ_z in production mode would not contribute anymore.
 - Only consider $\sigma(ZH) = 0.5\%$ and $\sigma(ZH) * Br(H \rightarrow ZZ) = 5.1\%$
- 7κ , Γ_{SM} can be resolved as: all κ correlated this way;

 $\Gamma_{SM} = 0.2137 \kappa_W^2 + 0.02619 \kappa_Z^2 + 0.5824 \kappa_b^2 + 0.08187 \kappa_a^2 + 0.002270 \kappa_v^2 + 0.06294 \kappa_\tau^2 + 0.02891 \kappa_c^2$


- 10 κ , independent Γ_H are constrained mainly by $H \rightarrow ZZ$ and $vvH \rightarrow bb$; gives ~3.26%;
- The only κ_{τ} measurement is $\sigma((\kappa_Z^2 \kappa_{\tau}^2)/\Gamma_H)=0.79\%$;
 - So it's difficult to improve κ_{τ} beyond 3.26%/2=1.63%; All κ result suffered from the uncertainty from Higgs width.

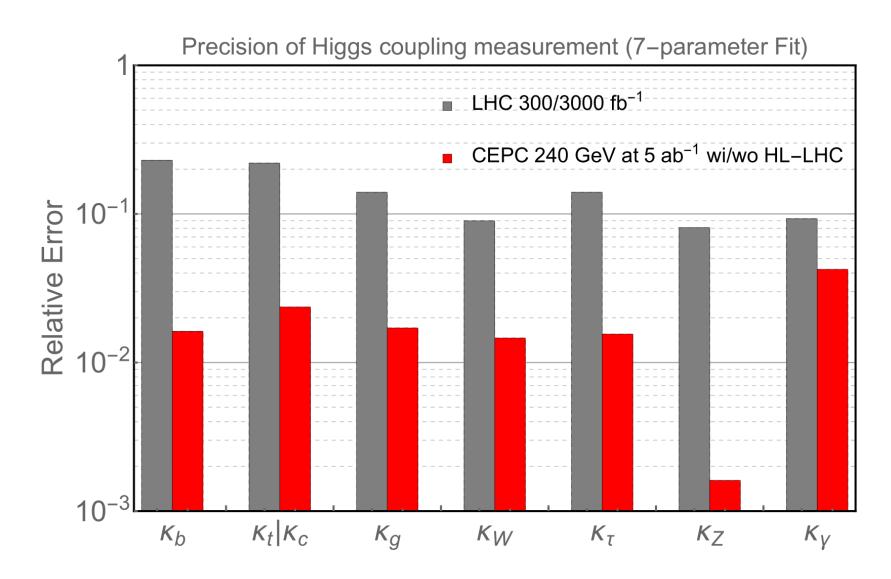
250GeV

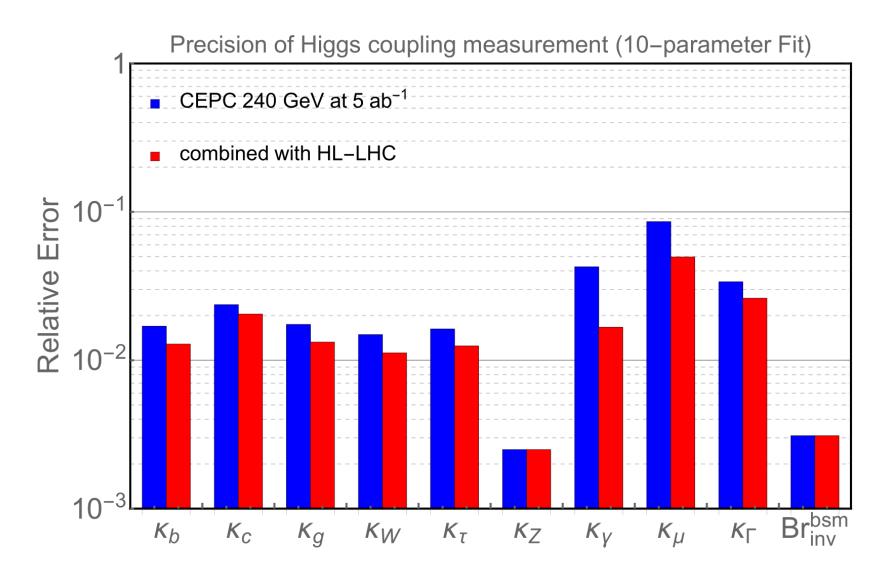

Г										I	0-р	aran	ieter	III C	orre	ialio	<u>л</u>	
ĸ _b	100.	-23. -21.	-49. -50.	-53. -49.	-48. -47.	42. 38.	-7.5 -3.2	Kb	100.	-8.9 -8.5	-10.	-10. -10.	<0.1	77. 75.	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	
K _c	-23. -21.	100.	– 13. – 15.	17. 16.	-3.0 -2.8	-28. -27.	0.67 0.30	K _C -	-8.9 -8.5 -12.	-24.	-22.	-0.85 -0.79 -2.9	0.77 1.8	-4.5 -4.2 6.9	<0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	4.9 4.6 -8.9
Kg-	-49. -50.	-13. -15.	100.	11. 5.1	-5.7 -6.1	-24. -14.	<0.1 -0.16	K _W		-22. -0.85 -0.79	-2.9	-2.3 100.	1.5 -18. -18.	12. 3.0 1.5	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1		-15. -8.4 -8.1
K _W -	-53. -49.	17. 16.	11. 5.1	100.	-28. -27.	-49. -49.	0.50 0.25	K	<0.1 <0.1 77.	0.82 0.77 -4.5	1.8 1.5 6.9	-18. -18. 3.0	100. 27.	27. 26. 100.	<0.1 <0.1 3.4	<0.1 <0.1 1.6	<0.1 <0.1 <0.1	-33. -32. -86.
κ _τ	-48. -47.	-3.0 -2.8	-5.7 -6.1	-28. -27.	100.	13. 12.	-1.7 -0.71	κ _Z -	75. <0.1 <0.1	-4.2 <0.1 <0.1	12. <0.1 <0.1	1.5 <0.1 <0.1	26. <0.1 <0.1	3.4 -4.8	-4.8 100.	-0.67 <0.1 <0.1	<0.1 <0.1 <0.1	-86. -4.1 -1.8
K _Z -	42. 38.	-28. -27.	-24. -14.	-49. -49.	13. 12.	100.	-1.4 -7.0	K _µ -	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	1.6 -0.67 <0.1	<0.1	100. <0.1	<0.1 <0.1	-1.9 -1.1 <0.1
K _Y -	-7.5 -3.2	0.67 0.30	<0.1 -0.16	0.50 0.25	-1.7 -0.71	-1.4 -7.0	100.	Br _{inv} - <i>K</i> _Γ -	<0.1 -88. -87.	<0.1 4.9 4.6		<0.1 -8.4 -8.1			<0.1 -4.1 -1.8		<0.1	<0.1 100.
	Kb	K _c	Kg	K _W	Κτ	KZ	K _Y		Kb	K _c	Kg	K _W	Κτ	KZ	K _Y	Κμ	Br _{inv}	KΓ

7-parameter fit Correlation

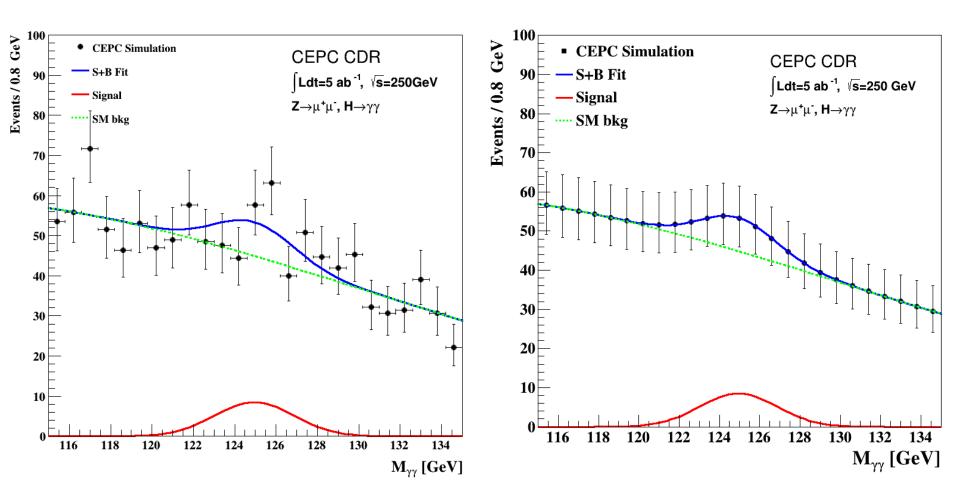
10-parameter fit Correlation

Half plane like this?

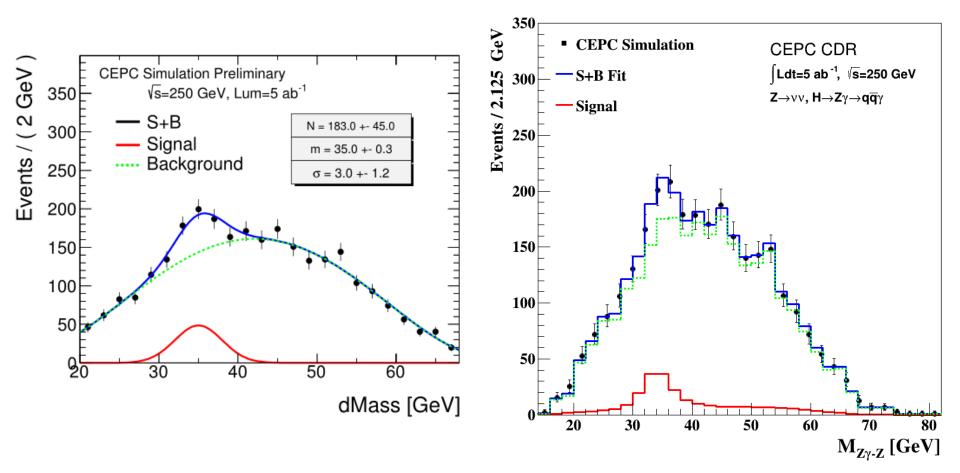



7-parameter fit Correlation

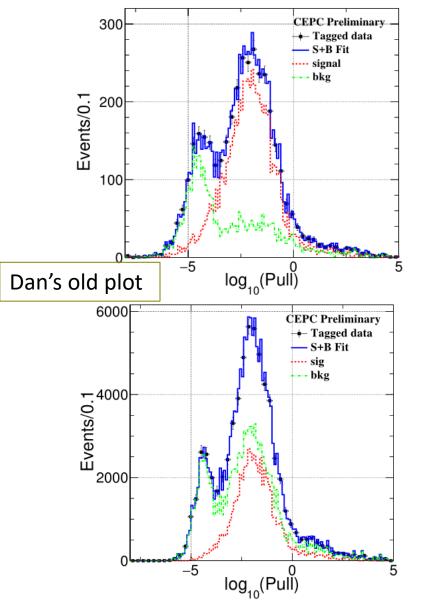
240GeV

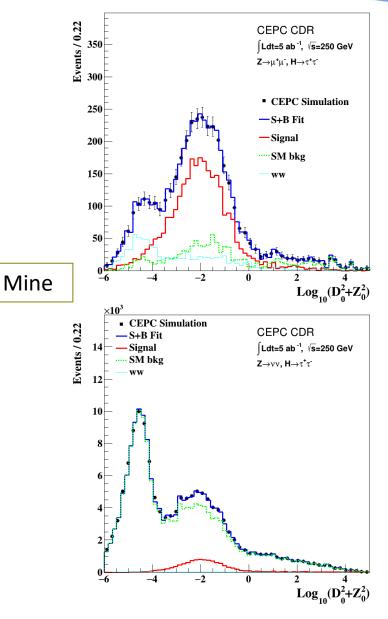


Plots in white paper


Using Asimov data; Larger font, no x axis error.

Plot to replace? qqzy




Weimin's old plot

Mine; binned

Plot to replace? tautau

