Optimization of data taking

Data taking scheme

- 1. Taking data at one point (just for m_W);
- 2. Taking data at two points (both m_W and Γ_W).
- 3. Taking data at three points (m_W , Γ_W and the correlated syst. uncertainties).

With $L = 3.2 \ ab^{-1}$, $\epsilon P = 0.72$

Taking data at one point (just for m_W)

There are two special energy points for just measuring m_W :

1. The one where most statistical sensitivity to m_W :

 $\Delta m_W(\text{stat.}) = \left(\frac{d\sigma_{WW}}{dm_W}\right)^{-1} \frac{\sqrt{\sigma_{WW}}}{\sqrt{L\epsilon P}} \approx 0.59 \text{ MeV at } E = 161.2 \text{ GeV (with } \Delta \Gamma_W \text{ effect)}$

2. The one where $\frac{\partial \sigma_{WW}}{\partial \Gamma_W} = 0$ at $E \approx 162.5$ GeV ($\Delta m_W 0.68$ MeV, but no $\Delta \Gamma_W$ effect)

Systematic uncertainty for data taking at one point

$$N_{tot} = L \cdot \sigma_{WW}(E) \cdot \frac{\epsilon}{P}$$

$$\Delta m_W(\sigma_{WW}) = \frac{\partial m_W}{\partial \sigma_{WW}} \Delta \sigma_{WW}$$

$$\Delta m_W(\Gamma_W) = \frac{\partial m_W}{\partial \sigma_{WW}} \frac{\partial \sigma_{WW}}{\partial \Gamma_W} \Delta \Gamma_W \dots$$

$$\sigma^{sys}(corr.) = \sqrt{\Delta L^2 + \Delta \sigma_{WW}^2 + \Delta \epsilon^2 + \Delta P^2}$$

With ΔL	$(\Delta \sigma_{WW}, \Delta \epsilon, \Delta P) < 1$	0^{-4} , σ^{sys} (cor	r.)<2 × 10^{-4}
-----------------	---	--------------------------------	-------------------

	E=161.2 GeV	E = 162.5 GeV
σ^{sys} (corr.)	0.35	0.44
ΔE (0.5 MeV)	0.36	0.37
$\Delta E_{BS}(1\%)$	0.12	-
$\Delta\Gamma_W$ (42 MeV)	8	-

Taking data at two energy points

To measure both Δm_W and $\Delta \Gamma_W$, we scan the energies and the luminosity fraction of the two data points:

1.
$$E_1, E_2 \in [155, 165] \text{ GeV}, \Delta E = 0.1 \text{ GeV}$$

2. $F\left(\frac{L_1}{L_2}\right) \in (0, 1), \Delta F = 0.05$

E_{1}, E_{2}

For further study, the two requirements are preformed: $\Delta m_W(\Delta \Gamma_W) \in (0.5, 4.5)$ MeV, the scatter plot of E_1, E_2 is divided into two parts corresponding.

$\Delta m_W, \Delta \Gamma_W$ vs E_1, E_2

$(\Delta m_W + A \cdot \Delta \Gamma_W)$ vs $E_1 = E_2 \sim 162.5 \text{ GeV},$

*E*₁~157.5 GeV

 $(\Delta m_W + A \cdot \Delta \Gamma_W)$ vs F

Systematic uncertainty for data taking at two point

With : E_1 =157.5GeV, E_2 =162.5 GeV, σ^{sys} (corr.) = 2 × 10⁻⁴(relative) ΔE_{BS} =1.6 × 10⁻³(relative), ΔE =0.5 MeV without the ΔE_{BS} without the ΔE_{BS}

	۸m _w (Mev)					منتخط المعالم ا معالم المعالم ال						
F	Sys.					Sys.						
	Stat.	σ (corr.)	ΔE	ΔE_{BS}	σ_{tot}^{sys}	Total	Stat.	σ (corr.)	ΔE	ΔE_{BS}	σ_{tot}^{sys}	Total
0.1	0.71	0.47	0.35			0.92	4.6	0.31	0.52			4.64
0.15	0.73	0.47	0.37			0.94	3.7	0.28	0.52			3.75
0.2	0.76	0.45	0.37			0.96	3.3	0.26	0.52			3.35
0.25	0.78	0.46	0.37			0.98	3.0	0.23	0.51			3.05
0.3	0.81	0.48	0.38			1.02	2.7	0.22	0.54			2.76

Summary, question and next to do

- 1. The preliminary results for data taking at one (two) point are shown.
 - a. For one point, Δm_W =0.9 MeV can be reached at 162.5 GeV;
 - b. For two points, the results with different F are given (without the effect of ΔE_{BS}).
 - c. The quantitative priority of Δm_W , or the F.
- 2. 5-D optimization with three data points is under way, It will be more complex.

F	Δm_W (MeV)	$\Delta \Gamma_{ m W}$ (MeV)
0.1	0.92	4.64
0.15	0.94	3.75
0.2	0.96	3.35
0.25	0.98	3.05
0.3	1.02	2.76

Backup

$$\sigma^{sys}$$
(corr.) ($\sqrt{\Delta L^2 + \Delta \sigma_{WW}^2 + \Delta \epsilon^2 + \Delta P^2}$)

Considering the σ^{sys} (corr.), the σ_{WW} becomes: $\sigma_{WW} \sim G(\sigma_{WW}^0, \sigma^{sys}$ (corr.)) We simulate data with σ_{WW} , and use σ_{WW}^0 in fit.

 σ^{sys} (corr.) = 2 × 10⁻⁴ (relative). By 500 samplings, the results are shown below (the uncertainty of each value is $1.5 - 2.0 \times 10^{-5}$)

F	0.1	0.15	0.2	0.25	0.3
Δm_W (MeV)	0.47	0.47	0.45	0.46	0.48
$\Delta\Gamma_W$ (MeV)	0.31	0.28	0.26	0.23	0.22

ΔE

With the ΔE , the total energy becomes:

$$E = G(E_p, \Delta E) + G(E_m + \Delta E)$$

With ΔE = 0.5 MeV and 500 samplings:

F	0.1	0.15	0.2	0.25	0.3
Δm_W (MeV)	0.35	0.37	0.37	0.37	0.38
$\Delta\Gamma_W$ (MeV)	0.52	0.52	0.52	0.51	0.54

Uncertainty of each value is $0.6 - 1 \times 10^{-5}$

$$\Delta E_{BS}$$

With the
$$\Delta E_{BS}$$
, the σ_{WW} becomes:

$$\sigma_{WW}(E) = \int_0^\infty \sigma(E') \times G(E, E') dE'$$

$$= \int_{E-6\sqrt{2}E_{BS}}^{E+6\sqrt{2}E_{BS}} \sigma(E') \times \frac{1}{\sqrt{2\pi}\sqrt{2}E_{BS}} e^{\frac{-(E-E')^2}{2(\sqrt{2\pi}E_{BS})^2}} dE'$$

For simulation $E_{BS} = E_{BS}^0 + \Delta E_{BS}$, and E_{BS}^0 for fit.