Methods of subtraction of secondary decays

Ao Xu

Tsinghua University

 Ω_c^0 lifetime measurement meeting

April 11, 2018

Discriminating variables

- IP: The distance between PV and the track of the candidate
- $\chi^2_{I\!P}$: The difference between the PV fit χ^2 with or without the track of the candidate
- TIP (Transverse IP)
 - The distance between PV and the track projection on a plane transverse to the beam
 - transverse to the beam • $TIP = \frac{\hat{z} \times \vec{p}}{|\hat{z} \times \vec{p}|} \cdot (\overrightarrow{DV} - \overrightarrow{PV})$

ln(IP)

- Measurement of $\sigma(pp
 ightarrow b\bar{b}X)$ at 7 TeV in the forward region
- Two-dimenional fit to the $M(K^-\pi^+)$ and $\ln(IP)$
- Prompt D⁰: Bifurcated double-gaussian, free parameter
- From b D^0 : Shape from MC

$\log(\chi^2_{I\!P})$

- Study of Cold Nuclear Matter D⁰ with prompt D0 meson production in pPb collisions at LHCb
- Constraint fit
- Prompt D^0 : Bifurcated double-gaussian, shape from MC
- From b D⁰: Gaussian
- Background: Sideband template, number of eventss with Gaussian constraint

- A_Γ measurement
- Prompt D⁰: Gaussian
- From b D^0 : Double exponential convolved with exp. resolution
- No background

Distributions of $\ln(\chi^2_{IP})$

- Background subtracted with mass sideband
- $\Omega_c^0(\text{left})$ and $\Xi_c^0(\text{right})$

Distributions of In(IP)

- Background subtracted with mass sideband
- $\Omega_c^0(\text{left})$ and $\Xi_c^0(\text{right})$

