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Complementary to Swift+Fermi



HXMT/HE ideal for 

most GRBs, short ones 

in particular!



Simulated HXMT 
spectra and light 

curves



Simulations Direction: 135 deg (rear)
HE mode: GRB

Background:

• total 18 CsI units
• 20 keV – 3 MeV
• 256 energy chan
• Includes:

● CXB
● Primary & albedo 

p+/e+/e-
● albedo gamma
● SAA proton -activ 

fluorescence

(Kindly provided to us by Shaolin Xiong on Feb 2017)

Estimated full-band background C/R: ~ 14,000 counts/s



Results:
joint spectral analysis



Swift-BAT + HXMT-HE

E
p
 beautifully constrained: most  Swift 
GRBs lack a  solid measure for E

p

Long GRB 161218A

 (sim
ulated, based on KW

 spectral ft)

(re
al data)



Fermi-GBM + HXMT-HE: dim long GRB

E
p
 poorly constrained for dim GRBs: 

HXMT-HE can help!

Φ = 5x10-6 erg cm-2

E
p
 = 300 keV

T
90

 = 25 s



Bright Swift-BAT short 130603B 

Φ = 6x10-7 erg cm-2

E
p
 (BAT)> 150 keV

E
p
 (BAT+HXMT) = 490 (-90,+140) keV



Mid-fluence Swift-BAT short 100625A 

E
p
 (BAT+HXMT) = 390 (-170,+370) keV

Φ = 2x10-7 erg cm-2

E
p
 (BAT)> 150 keV



Results:
temporal analysis



Pulse asymmetry/width paradigm

● In almost all cases soft 
photons lag behind 
hard photons 
(=positive lag)

● Soft profles are 
broader and more 
asymmetric

● Lag correlates with 
width (the broader the 
pulse, the greater the 
lag)

Norris+(2000)



How is it measured?
● By cross-correlating the two profles and taking the peak of the cross-

correlation function (CCF)

● By ftting the peaks and measuring the delay between them.

              They may differ insomuch as the profles' shapes are different!

Cheng+(1995)

CCF

We consider this (most used)

CCF (τ i) ≡

(1 /N )∑
j=0

N−1

(x j− x̄) ( y(i+ j)mod N− ȳ)

σ x σ y



Why do we care about lags?
● Lag τ- luminosity L correlation  (L ∝ τ-1) for long GRBs

● Empirical way of classifying short vs. long GRB (for ambiguous cases)

● While physical relevant, there's no exhaustive self-consistent explanation 

Norris+(2000)

Pre-Swift GRBs (BATSE data): Ch1(25-50 keV) vs. Ch3(100-300 keV)

Low-lum 
GRB



Why do we care about lags?
● Lag τ- luminosity L correlation  (L ∝ τ-1) for long GRBs

● Empirical way of classifying short vs. long GRB (for ambiguous cases)

● While physical relevant, there's no exhaustive self-consistent explanation 

Bernardini+(2015)

Typical short GRBs display 
much smaller/negligible 
lags (within a few 10 ms)



Gehrels+ (2006)

Lag can help classify ambiguous cases such as elusive GRB 060614



The added value of Insight-HXMT
● Limitations up to now:

● CCF needs lots of counts in both channels

● at > 300 keV almost uncharted territory in the 
lag calculation

● Short GRBs are particularly hampered (fewer 
counts and spectrally harder than LGRBs)

The unrivalled effective area above 300 keV 
of Insight-HXMT holds a great promise



Short GRB simulated 
profiles and 

corresponding CCF-
estimated lags



f (t) ≡ { A e t / tr (t<0)

A e−t / td (t>0)

T (f 1, f 2) = −t r ln [ f 1(1+
t d

t r
) ] −td ln [1+

tr
t d

−f 2(1+
t r

t d
)]

T 90 = T (0.05,0 .95)

FRED: simple exp model

Time interval between f1 and 
f2 cumulative fluence:

t d /t r ∼ 2÷3



Ep (t) = Ep , 0 (1+
t+6 t r

6 (t r+ t d))
−2

Assumed hard-to-soft evolution
Band function :
αB =−0.5
βB =−2.3
E p ,0 = 1 MeV

Kocevski & Liang (2003)



Simulated short GRBs (single-FRED shaped)

Fluence are in the 10-1000 keV (Fermi-GBM band)
HXMT background rate: ~6000 cts/s

Fluence[cgs]

T90 [s]

8e-7 1e-6 2e-6 5e-6

0.84
(tr=0.1s, 
td=0.25 s)

worst 
S/N

0.40
(tr=0.05s, 
td=0.12 s)

best S/N

= improving S/N



Mid/bright Fermi/GBM fluence distribution tail

Fermi/GBM catalogue (Bhat+16)



Short GRB Fermi/GBM T90 distribution

Fermi/GBM catalogue (Bhat+16)



Simulations in a nutshell
● Energy bands:

● Fermi/GBM: 50 – 300 keV
● HXMT (GRB mode): > 300 keV

● Min time binning: 10 ms (we binned up as imposed by S/N)

● For each combination of (pulse duration, fluence):
● Simulate 1 GBM (50-300 keV) and 1 HXMT (>300 keV) profle
● Calculate true (=without stat noise) lag
● Simulated profles are added Poisson noise (including bkg)
● Each profle is smoothed with a Savitzky-Golyay flter (to avoid 

extra variance due to 2nd-order realisations) and used to 
generate 1000 fake profles for each instrument

● 1000 CCF are ftted with a cubic and the resulting lag 
distribution yields the best lag along with 1, 2 sigma (Gaussian) 
uncertainties.



Simulated pulse1 (T90=0.84 s)

F=8e-7 cgs F=5e-6 cgs



Simulated pulse2 (T90=0.40 s)

F=8e-7 cgs F=5e-6 cgs



Results:
Fermi/GBM vs. HXMT 

CCF



Example of CCF of simulated profles

Best ftting cubic (F=5e-6 cgs, T90=0.40 s)



Lag distribution (for a given set of simulated CCF)

1sig (Gauss)

2sig (Gauss)



Estimated & true lag vs. fluence

Pulse 1 (T90=0.84 s)



Estimated & true lag vs. fluence

Pulse 2 (T90=0.40 s)



Conclusions
● Joint analysis of HXMT-HE (GRB mode) with either Swift-BAT or Fermi-

GBM will greatly improve constraining Ep and high-energy index for 
long GRBs. Gain insights into:
● GRB physics (still don't know what makes gamma-rays)
● GRB as cosmological probes through Ep-Eiso (Amati) relation

● Joint analysis of short (hard) GRBs:
● Help characterize and possibly fnd different classes (soft SGRBs, 

such as GRB170817A associated to GW170817)
● invaluable probes of binary NS-NS mergers coupled with gravitational 

waves!
● Spectral lag is a unique empirical parameter for the short vs. long (i.e., 

merger vs. collapsar) classifcation
● Its measure is challenging as it crucially demands lots of counts 

especially in the hard energy channels
● Insight-HXMT can fll in the current lack of lag-related studies above 

300 keV



Thank you



Back-up Slides





SGRB 130603B: KN evidence in afterglow

(Tanvir+13, Nat) (Berger+13, ApJ)



Short and Long GRBs: two 
families (at least)

Energetic SN 
„hypernova“ 
associated

No 
associated 

SN



Short and Long GRBs: two 
families (at least)

Energetic SN 
„hypernova“ 
associated

GW170817: 

smoking gun 

from GWs!!!

No 
associated 

SN



Typical non-
thermal 

spectrum of a 
GRB: Band 
function

E
p



Real data: background looks way better

GRB 170906: GCN 21921 GRB 170921: GCN 21919

GRB 171011B: 
GCN 22026



E
p
: key to GRB physics and as a cosmic ruler

Ep-Eiso “Amati” relation 
(Martone+2017)



Time-resolved L
p
- E

p

(Lu+2012)



Three-parameter relation E
p
- EX,iso- E

γ,iso

(Bernardini+, 2012; Margutti+2013; Zaninoni+2016)

short

long



Comeback of sub/photospheric models

● Recently, so-called (sub)photospheric models gained more credit 
compared with the traditional internal shock model (in which the 
prompt is produced at R >> Rphot through shocks that convert 
kinetic into radiated energy) 

● Establishing the presence of (sub)dominant photospheric 
components (BB or BB-like) in time-integrated (resolved) requires a 
precise measurement of all components

● A large effective area coupled with  broadband spectroscopy 
capabilities becomes a must  HXMT→



Thermal component identifcation

(Ryde+ 2010)

GRB 090902B: BB+PL

(Axelsson+ 2015)

GRB 110721A: Band+BB

A sensitive, broad-band coverage up to few MeV is crucial -especially for intermediate 
fluence GRBs- to assess the presence of dominant/subdominant thermal components in 

addition to typical non-thermal (PL, Band) spectra



Thermal emission in GRB160107A precursor

(Kawakubo+ 2018)

A large effective area at several 100 keV is key to assess the plausibility of a multi-
component modeling

MAXI + CALET



Photospheric emission: different evolutions

(Ghirlanda+ 2013)

A possible thermal component may show up in 
different ways:
(1) throughout the entire GRB as a dominant 
component (class I)
(2) just at the beginning and then fade away 
(class II)
(3) Throughout the entire GRB as a subdominant 
component with a few % fluence (class III)



Observed ensemble 
properties of GRB 
prompt emission



Long
GRB

Observed E
p
 distributions

BeppoSAX (CG+11) Konus (Tsvetkova+17)

Short
GRB

Higher Ep for 
SGRBs

(on average)

Konus (Svinkin+16)



Observed fluence (10 keV – 1 MeV) distributions

Fermi/GBM catalogue (Bhat+16)



Observed fluence (10 keV – 1 MeV) distributions

Fermi/GBM catalogue (Bhat+16)

SGRBs are harder and 

dimmer (less fluent) 

than  LGRBs



Simulations Direction: 135 deg (rear)
HE mode: GRB

Response 
Function:

• total 18 CsI units
• 200 keV – 3 MeV
• 256 energy chan

(Kindly provided to us by Shaolin Xiong on Feb 2017)



Joining GBM+HXMT 
greatly improves 

accuracy on Ep for    
Φ < 10-5 erg cm-2

The same holds for 
the high-energy 
photon index β



Time-resolved E
p
: the HXMT added value

GRB 080817: with vs. w/o HXMT (from Yu+16, A&A)



(adapted from 
Dichiara+16, A&A)

Ep,i – Slope(PDS) relation
Simulated LC (HXMT vs Fermi-GBM)

PDS



Expected Detection Rate: ~200/yr

~30% short

~50% in common with Swift 
and/or Fermi and bright enough 

to enable spectral analysis



What is the (spectral) lag?
“Sort of delay between time profles of the same GRB as seen in different 
energy channels” Peng+(2011)

Hard-to-soft 
spectral 
evolution



Ukwatta+(2011)

Swift GRBs (BAT data): 100-150 keV vs. 200-250 keV (rest frame!)

Lag-Luminosity holds for Swift long GRBs as well



Salmonson & Galama (2002)

Lag is likely a key parameter connecting prompt and afterglow

tj = jet break time in the 
optical afterglow light curve

Lag and jet break time 
appear to be correlated



Margutti, Guidorzi +(2010)

Lag-Luminosity extended to X-ray flares in the X-ray afterglow!



Why do we care about lags?
● Lag τ- luminosity L correlation  (L ∝ τ-1) for long GRBs

● Empirical way of classifying short vs. long GRB (for ambiguous cases)

While physical relevant, there's no exhaustive self-consistent explanation 
Two main explanations:
● Intrinsic (=within fluid-comoving frame) spectral evolution
● Kinematic/geometric (Doppler factor  Lorentz factor as the key parameter)→

Ukwatta+ (2011)

or th
e tw

o combined



Possible connection with jet/viewing angle

Ioka & Nakamura (2001)

Lag-Lum as the result of combination of:
1) fireball slowing-down (affecting both relativistic beaming 
and Doppler boosting)
2) viewing angle
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