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C/R time resolution:
– 1 s (continuous)
– 7.8ms/0.5ms (GRB trigger)

● Low-inclination (~3°)orbit 



BeppoSAX/GRBM
● 4 independent CsI(Na) 

slabs (1 x 27.5 x 41.3 cm3)
● Geom area: 1136 cm2 each
● 2 energy bands:

– 40-700 keV
– > 100 keV

C/R time resolution:
– 1 s (continuous)
– 7.8ms/0.5ms (GRB trigger)

● Low-inclination (~3°)orbit 



BeppoSAX/GRBM  
background modelling: 

what for?



Science Motivations

• Sensitive search for dim, long-lasting (~103 s) events so 
far undetected
– Cross-check of fast X-ray transients (FXTs) detected in 

the BeppoSAX Wide Field Cameras
– Low-luminosity GRBs (possibly different class; shock 

breakout emission)
– Possible counterparts to Fast Radio Bursts (DeLaunay+16)

– Dim, long-lived tails following major events

• Monitoring of bright, hard sources such as CygX-1 in the 
40-700 keV



First preliminary 
attempt prior to 

adopting machine 
learning



Example: FXT (GRB?) 010501B

40-700 keV

>100 keV

(bkg modelled by averaging out similar orbits)



FXT 010501B: close in

40-700 keV

>100 keV



Potential for CygX-1

>100 keV

40-700 keV



CygX-1: rate history (prelim)



Then we moved on 
towards a machine 
learning approach
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• Partition the entire data set so as to group observations with 
similar background (based on the attributes that have 
previously been identified)

• Address a regression problem adopting a supervised learning:
• Split the data set into a training set and a validation set
• Explore the dependence of background on attributes using 

the training set
• We currently use a linear regression (maximum 

likelihood estimation)
• Next we plan on using generalized linear models (GLMs)

• Estimate mean, median, and overall absolute error 
distributions on validation set
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data gaps
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• Epoch
• Particle Monitor data

• Orbit grouping based on s/c attitude:
• Composition of a number of separate “orbit families”
• Apply supervised ML regression within each family 

indepdendently of one another



Several consecutive orbits 

>100 keV

40-700 keV



Single orbit

40-700 keV

>100 keV

Co
un

t s
/s
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Creation of Families

• Each family has a father OP
• All members have pointing differing by < 30 degrees from the 

father (axis by axis)
• Fathers chosen so as to maximise mutual distances (least 

anisotropic grouping = optimal sky coverage)
• Results:

– 115 families
– 17072 good orbits (after selection)

average = 148 orbits/family



Distribution of the number of orbits 
per family



Bright sources removal: occultation technique

To ease comparison between different orbits, we preliminarily 
removed the contribution of Crab and of CygX-1 after 
estimating their rate with the occultation technique



Occultation step: e.g. Crab
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Preliminary results



Example of bkg modelling for generic 
orbits (randomly selected from Fam 88)

Smoothed LC ML-modelled bkg

Orbit 
173
 -

 training 
set

Orbit 89
 -
  

validation 
set



mean abs error distribution(N=207 orbits)

Example1: Training & Validation (orb Fam 88)
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mean abs error distribution

Training errors are < Val errors → slight overfitting

(N=207 orbits)

Error ~< 15 cts/s, i.e. tw
ice as 

small as stat err (3
0 cts/s)

Example1: Training & Validation (orb Fam 88)



median abs error distribution(N=207 orbits)

Example1: Training & Validation (orb Fam 88)



overall abs error distribution(N=207 orbits)

Example1: Training & Validation (orb Fam 88)



Example of bkg modelling for generic 
orbits (randomly selected from Fam 78)

Smoothed LC ML-modelled bkg

Orbit 92
 -

 training 
set

Orbit 143
 -
  

validation 
set



Example2: Training & Validation (orb Fam 78)

mean abs error distribution(N=332 orbits)



Example2: Training & Validation (orb Fam 78)

median abs error distribution(N=332 orbits)



Example2: Training & Validation (orb Fam 78)

overall abs error distribution(N=332 orbits)
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Summing up
• A ML linear regression approach looks promising. We're still in 

the process of refining the supervised learning tuning the 
set of attributes that play a role.

• Ultimate goal: systematic search for weak, slow-varying 
events to constrain low-lum GRB rate  (e.g. 060218, 100316D, 
171205A;  paper in prep)

• Search for Fast Radio Burst putative counterparts
• Extract complete LC (40-700 and >100 keV) of CygX1 and 

study variability
• Once the procedure will be optimised on BSAX data, a similar 

approach can be applied to HXMT data, building upon the 
knowledge of the role(s) played by the different attributes.



Thank you
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