

COMET Tracking

Ewen Gillies

New Physics & CLFV

COMET Design Principles

New Tracking Techniques Local-Level GBDT Neighbour-Level GBDT Hough Transform Track-Level GBDT

Backup

Tracking in the COMET Experiment using Machine Learning

Ewen Lawson Gillies

Imperial College London High Energy Particle Physics

> IHEP EPD Seminar May 3rd, 2018

Overview

COMET Tracking

Ewen Gillies

New Physics & CLFV

COMET Design Principles

New Tracking Techniques Local-Level GBDT Neighbour-Level GBDT Hough Transform

Backup

COMET is a next generation, high intensity experiment looking for new physics.

- 1 New Physics: Charged Lepton Flavor Violation
- 2 New Designs: The Coherent Muon to Electron Transition (COMET) experiment
- 3 New Techniques: Gradient Boosted Decision Trees (GBDT) and Hough Transforms in Track Finding

COMET Tracking

Ewen Gillies

New Physics & CLFV

COMET Design Principles

New Tracking Techniques Local-Level GBDT Neighbour-Level GBDT Hough Transform Track-Level GBD1

Backup

New Physics & CLFV

Lepton Flavor Violation

COMET Tracking

Ewen Gillies

New Physics & CLFV

COMET Design Principles

New Tracking Techniques Local-Level GBDT Neighbour-Level GBDT Hough Transform

Backup

Lepton flavor is conserved in the Standard Model.

Muon Decay: $\mu^- \rightarrow \nu_{\mu} + e^- + \bar{\nu}_e$ Muon Capture: $\mu^- + N \rightarrow \nu_{\mu} + N'$

Do the charged leptons, (τ, μ, e) , violate this conservation law of the Standard Model?

Current Experimental Limits

COMET Tracking

Ewen Gillies

New Physics & CLFV

COMET Design Principles

New Tracking Techniques Local-Level GBDT Neighbour-Level GBDT Hough Transform Track-Level GBDT Charged Lepton Flavor Conservation has been tested for decades. Upper limits for muonic search channels:

■ Br($\mu^+ \rightarrow e^+ + e^+ + e^-$) < 1.0 × 10⁻¹² (SINDRUM 1988) ■ Br($\mu^+ \rightarrow e^+ + \gamma$) < 4.2 × 10⁻¹³ (MEG 2016) ■ B($\mu^- + Au \rightarrow e^- + Au$) < 7 × 10⁻¹³ (SINDRUM II 2006)

COMET focuses on muon to electron conversion. Without CLFV, this process can only come indirectly with processes involving neutrinos:

$$\mathsf{B}(\mu^- + \mathsf{N}
ightarrow e^- + \mathsf{N}) \sim 10^{-52}$$

In 2018, COMET Phase I aims to achieve the sensitivity of:

$$\mathsf{B}(\mu^- + \mathsf{AI} o e^- + \mathsf{AI}) < 7.2 imes 10^{-15}$$

Possible Channels for Signal

Possible Channels for New Physics

COMET Tracking

Ewen Gillies

New Physics & CLFV

COMET Design Principles

New Tracking Techniques Local-Level GBDT Neighbour-Level GBDT Hough Transform Track-Level GBDT

Backup

Four-Fermi contact:

- Increased sensitivity for *µ*-*e* conversion
- Model-independent search

Photonic:

- Still accessible in μ-e conversion search.
- Less sensitive than dedicated µ-e gamma experiments (like MEG).

Complementary Searches

- Relative sensitivity to Four Fermi and Photonic interactions is model dependent.
- Highly complimentary to MEG search

$$egin{split} \mathcal{L} &= rac{1}{1+\kappa} rac{m_{\mu}}{\Lambda^2} ig(ar{\mu}_R \sigma^{\mu
u} e_L F_{\mu
u}ig) \ &+ rac{\kappa}{1+\kappa} rac{1}{\Lambda^2} ig(ar{\mu}_L \gamma^{\mu} e_Lig) ig(ar{q}_L \gamma_{\mu} q_Lig) \end{split}$$

Complementary Searches

- Relative sensitivity to Four Fermi and Photonic interactions is model dependent.
 - Highly complimentary to MEG search

100

PRISM

 $\mathcal{B}(\mu^{-}Al \rightarrow e^{-}Al)$

COMET Phase-II

COMET Phase-I (extended)

 $< 7 \times 10^{-19}$

 $< 3 \times 10^{-17}$

< 7 × 10⁻¹⁶ COMET Phase-I

 $< 7 \times 10^{-15}$

 $< 7 \times 10^{-13}$

SINDRUM-II

 $\mathcal{B}(\mu^{-}Au \rightarrow e^{-}Au)$

Four-Fermi

10

Stopped Muon Processes

COMET Tracking

Ewen Gillies

New Physics & CLFV

COMET Design Principles

New Tracking Techniques Local-Level GBDT Neighbour-Level GBDT Hough Transform Track-Level GBDT

Backup

Stopped muon cascades to ground state orbital, emitting gamma rays.

Muon stopped in atom

Decay in Orbit

Nuclear Muon Capture

 μ -e Conversion

Background: Nuclear Muon Capture

COMET Tracking

Ewen Gillies

New Physics & CLFV

COMET Design Principles

New Tracking Techniques Local-Level GBDT Neighbour-Level GBDT Hough Transform Track-Level GBDT M-

Nuclear Muon Capture

A. Edmonds AICAP Experiment Proton Emission Spectrum AlCap (Thick Al - Left Arm - Analyser 1) ž. Rate (0 - 10 MeV) = 0.031 All AlCap Rates Match (0.0195 protons per car AlCap (Thin Al - Left Arm - Analyser 2) Bate (0 - 10 MeV) = 0.036 PRELIMINARY TWIST (A. Gaponenko) Rate (3.4 - 28 MeV) = 0.031 280 TDR (Normalised to AlCap 4 - 8 MeV) Rate (0 - 30 MeV) = 0.04995 Kinetic Energy [keV

AlCap measurements

Background: Muon Decay in Orbit

Yandex

Imperial College

Data Factory

Signal Process: μ -e Conversion

COMET Tracking

Ewen Gillies

New Physics & CLFV

COMET Design Principles

New Tracking Techniques Local-Level GBDT Neighbour-Level GBDT Hough Transform Track-Level GBDT μ -*e* Conversion:

$$\mu^{-} + N(A, Z) \rightarrow e^{-} + N(A, Z)$$

Momentum of Signal Electron:

$$E_e = m_\mu - B_\mu - E_{
m recoil}$$

For Aluminum (COMET):

$$E_e = 104.9 \text{ MeV}$$

$$\tau_{\mu} = 864 \text{ ns}$$

COMET Tracking

Ewen Gillies

New Physics & CLFV

COMET Design Principles

New Trackin Techniques Local-Level GBDT Neighbour-Level GBDT Hough Transform

Track-Level GB

Backup

COMET Design Principles

COMET Tracking

COMET Phase I Design

COMET

Design Principles

COMET Phase I Design

COMET Tracking

Ewen Gillies

New Physics & CLFV

COMET Design Principles

New Tracking Techniques Local-Level GBDT Neighbour-Level GBDT Hough Transform

Backup

COMET Phase I Design

COMET Tracking

Ewen Gillies

& CLFV

COMET Design Principles

Section

- 10¹² protons are fired every second at the production target to produce pions.
- Pions decay into muons while flying down the beamline through curved solenoid magnets.

COMET Phase I Design

COMET Tracking

Ewen Gillies

Design Principles

Section

- 10¹² protons are fired every second at the production target to produce pions.
- Pions decay into muons while flying down the beamline through curved solenoid magnets.
- 10⁹ muons are stopped in the aluminium target every second. The detector watches for the 105 MeV electrons

COMET Phase I Detectors

Tracking Ewen Gillies

COMET

New Physics & CLFV

COMET Design Principles

New Tracking Techniques Local-Level GBDT Neighbour-Level GBDT Hough Transform Track-Level GBDT

Backup

Pulsed Beam and Time Window

- \blacksquare Beam is pulsed at approximately 1 $\rm MHz$
- 8e6 protons in each pulse
- Timing window of the detector waits until after the beam flash

Yandex

Imperial College

Data Factory

Phase I Geometry

COMET Tracking Ewen Gillies & CLFV COMET Design Principles 21

Phase I Geometry

COMET Tracking

Ewen Gillies

New Physics & CLFV

COMET Design Principles

New Tracking Techniques Local-Level GBDT Neighbour-Level GBDT Hough Transform Track-Level GBDT TIMITITI

Phase I Geometry

COMET Tracking

Ewen Gillies

New Physics & CLFV

COMET Design Principles

New Tracking Techniques

Local-Level GBD' Neighbour-Level GBDT Hough Transform

Backup

New Tracking Techniques

Cylindrical Detector

COMET Tracking

Ewen Gillies

New Physics & CLFV

COMET Design Principles

New Tracking Techniques

Local-Level GBDT Neighbour-Level GBDT Hough Transform Track-Level GBD

Backup

$\mathsf{CDC} \text{ and } \mathsf{CTH}$

Ewen Gillies

New Physics & CLFV

COMET Design Principles

New Tracking Techniques

Local-Level GBD Neighbour-Level GBDT Hough Transform Track-Level GBD

Backup

CDC and CTH

Ewen Gillies

& CLFV

New Tracking Techniques

Hough Transform

Typical Event [1]

Typical Event [2]

90°

Classification Problem

COMET Tracking

Ewen Gillies

New Physics & CLFV

COMET Design Principles

New Tracking Techniques

Local-Level GBD Neighbour-Level GBDT

Track-Level GBD

Backup

"Is this wire a signal hit from a signal track". Algorithm developed with Dr. Alex Rogozhnikov when he was at Yandex.

Define categories of features:

- 1 "Local" Features: Features on the wire itself
- 2 "Neighbour" Features: Features of adjacent wires
- 3 "Shape" Features: Check if the wire forms a circle with other hit wires

Previous Classifier: Cutting on Energy Deposition and the college

COMET Tracking

Ewen Gillies

New Physics & CLFV

COMET Design Principles

New Tracking Techniques

Local-Level GBDT

Neighbour-Level GBDT Hough Transform

Backup

Local-Level GBDT

Local Features of a Hits

COMET Tracking

Ewen Gillies

New Physics & CLFV

COMET Design Principles

New Tracking Techniques

Local-Level GBDT

Neighbour-Leve GBDT Hough Transfor

Track-Level GBDT

Backup

Hits in the Cylindrical Drift Chamber (CDC) have three main properties or "features"

- Radial distance from centre.
- Energy deposited by charged particle (i.e. ADC signal).
- Timing of energy deposition.

Radial Distance Distribution

Relative Timing Distribution

New Physics & CLFV

COMET Design Principles

New Tracking Techniques

Local-Level GBDT Neighbour-Level GBDT Hough Transform Track-Level GBDT

Backup

COMET Tracking

Ewen Gillies

New Physics & CLFV

COMET Design Principles

New Tracking Techniques

Neighbour-Level GBDT

Hough Transform

Backup

Neighbour-Level GBDT

Local and Neighbour Features

COMET Tracking

Ewen Gillies

New Physics & CLFV

COMET Design Principles

New Tracking Techniques

Neighbour-Level GBDT

Hough Transform Track-Level GBDT

Backup

Signal hits are often grouped in local clusters, meaning neighbouring wire features are extremely important.

Neighbour-Level Features:

- Radial distance from centre, same for wire and LR neighbours (1 feature)
- Energy deposited on wire, left neighbour, and right neighbour (3 features).
- Timing of hit on wire, left neighbour, and right neighbour (3 features).

Left Neighbour Charge Deposit

Left Neighbour Relative Timing Distribution

1500

COMET Wires with no hits get a very negative time. Tracking Ewen Gillies Relative time of Left Hand Wire. No Hit = -1000 0.018 Signal 0.016 & CLFV Background 0.014 0.012 Vormalised Hit Count 0.010 Neighbour-Level GBDT 0.008 0.006 0.004 0.002 0.000 -500 -1000 500 1000

Relative Time [ns]

Neighbour-Level GBDT Output Distribution

Output of Neighbour-Level GBDT

Ewen Gillies

New Physics & CLFV

COMET Design Principles

New Tracking Techniques Local-Level GBDT

Neighbour-Level GBDT

Track-Level GBDT

Backup

- Open circles are original hit locations
- Signal Hits and Background Hits are scaled to the output of the neighbour level GBDT.

COMET Tracking

Ewen Gillies

New Physics & CLFV

COMET Design Principles

New Tracking Techniques Local-Level GBDT

Neighbour-Leve GBDT

Hough Transform

Backup

Hough Transform

Circular Hough Transform

COMET Design Principles

New Tracking Techniques Local-Level GBDT Neighbour-Level GBDT Hough Transform

Track-Level GBD1

Backup

Figure: Points in (x, y) space, blue, thought to be on a circle, red, whose centre lies at the origin, orange. Figure: A mapping from the points in (x, y) space, blue, to possible circle centers in (a, b) space, green.

Hough Implementation

Ewen Gillies

New Physics & CLFV

COMET Design Principles

New Tracking Techniques Local-Level GBDT Neighbour-Level GBDT

Hough Transform Track-Level GBDT

Backup

 Hits with corresponding hough contributions
 Track centers scaled by contributions from hit points.

Executing the Hough Transform

COMET Tracking

Ewen Gillies

New Physics & CLFV

COMET Design Principles

New Tracking Techniques Local-Level GBDT Neighbour-Level GBDT

Hough Transform

Track-Level GBD

Backup

Weight wire *j*'s contribution by its GBDT output:

$$W_j = y_{ ext{Grad.}}\left(f_1^{(j)}, \dots, f_N^{(j)}
ight)$$
 for N features

Apply hough transform between wire *j* and track center *i*:

Hough Track centre

Forward Hough Transform on Neighbour Level Vander College GBDT Output

COMET Tracking

Ewen Gillies

New Physics & CLFV

COMET Design Principles

New Tracking Techniques Local-Level GBDT Neighbour-Level GBDT

Hough Transform Track-Level GBDT

Backup

- Signal hits scaled by neighbour level GBDT output W_j.
- Background hits also scaled by W_j.
- Hough transform scaled by W_j of corresponding hit.
- Track centers
 scaled by C_i from
 C_i = T_{ij}W_j.

Executing the Hough Transform

COMET Tracking

Ewen Gillies

New Physics & CLFV

COMET Design Principles

New Tracking Techniques Local-Level GBDT Neighbour-Level

Hough Transform

Track-Level GBD1

Backup

Reweight the results to highlight maxima:

$$C_i \rightarrow C'_i(\alpha) = \exp(\alpha C_i)$$

Invert the transform:

Inverse Reweighted Hough Transform Output

COMET Tracking

- Ewen Gillies
- New Physics & CLFV
- COMET Design Principles
- New Tracking Techniques Local-Level GBDT Neighbour-Level GBDT
- Hough Transform Track-Level GBDT
- Backup

- Signal hits scaled by reweighted inverse Hough output W'_j.
 Background hits scaled by W'_j.
 Track centers scaled by C'_i.
- Inverse Hough transform scaled by C'_i of corresponding centre.

Yandex

Imperial College

Data Factory

Inverse Hough Output Feature

COMET Tracking

Ewen Gillies

New Physics & CLFV

COMET Design Principles

New Trackin Techniques Local-Level GBD^{*} Neighbour-Level GBDT

Hough Transform

Track-Level GBDT

Backup

Track-Level GBDT

Track-Level GBDT Output Distribution

Inverse Reweighted Hough Transform Output

COMET Tracking

Ewen Gillies

New Physics & CLFV

- COMET Design Principles
- New Tracking Techniques Local-Level GBDT Neighbour-Level GBDT Hough Transform

Track-Level GBDT

Backup

- Signal hits and Background hits scaled by output of track-level GBDT.
- Note: No cuts are placed on scaling of these outputs, this is the full response of the track-level GBDT.

Yandex

Imperial College

Data Factory

Inverse Reweighted Hough Transform Output

Ewen Gillies

New Physics & CLFV

COMET Design Principles

New Tracking Techniques Local-Level GBDT Neighbour-Level GBDT Hough Transform

Track-Level GBDT

Backup

- Cut placed on GBDT output that preserves 99% of signal hits.
- Signal hits and Background hits are filled if they pass the cut.

Yandex

Imperial College

Data Factory

ROC Curves [1]

COMET Tracking

Ewen Gillies

New Physic & CLFV

COMET Design Principles

New Trackii Fechniques Local-Level GBD Neighbour-Level GBDT

Hough Transform Track-Level GBDT

Backup

Comparison of cut-based classifier vs GBDT methods.

ROC Curves [2]

COMET Tracking

Zoomed ROC curves, note the axes.

Ewen Gillies

New Physics & CLFV

COMET Design Principles

New Trackin Techniques Local-Level GBDT Neighbour-Level GBDT Hough Transform

Track-Level GBDT

Backup

Track Finding Summary

COMET Tracking

Ewen Gillies

New Physics & CLFV

COMET Design Principles

New Tracking Techniques Local-Level GBDT Neighbour-Level GBDT Hough Transform Track-Level GBDT

Backup

The track finding algorithm developed with Dr. Alex Rogozhnikov at Yandex is successful.

- This is the first time BDTs have been used in track finding (so far as I know).
- Further development still needed to define tracks as collections of filtered hit points.

Further work: Track Trigger

- Algorithm has been developed with Yandex.
- FPGA firmware developed on similar principles in Japan.
- Implementation is underway

https://github.com/ewengillies/track-finding-yandex

COMET Tracking

Ewen Gillies

New Physics & CLFV

COMET Design Principles

New Tracking Techniques Local-Level GBDT Neighbour-Level GBDT Hough Transform Track-Level GBDT

Backup

COMET Tracking

Ewen Gillies

New Physics & CLFV

COMET Design Principles

New Tracking Techniques Local-Level GBDT Neighbour-Level GBDT Hough Transform Track-Level GBD1

Backup

Backup

The COMET Experiment: Phase II

Ewen Gillies

New Physics & CLFV

COMET Design Principles

New Tracking Techniques Local-Level GBDT Neighbour-Level GBDT Hough Transform Track-Level GBDT

Backup

- Capture backwards scattered pions from proton beam.
- Bent solenoids select low momentum muons.
- Muons stopped in target, conversion occurs here!
- Bent solenoids select high momentum electrons.
- Detector waits for offset fiducial time window.

Yandex

Imperial College

Data Factory

Phase II Geometry

Cylindrical Detector: Stereometry

Figure: A projection of a wire array with alternating stereo angles from above.

Figure: A projection at Z = 0 of a wire array with alternating stereo angles from along the beamline.

Decision Tree

COMET Tracking

Ewen Gillies

New Physics & CLFV

COMET Design Principles

New Tracking Techniques Local-Level GBDT Neighbour-Level GBDT Hough Transform Track-Level GBDT

Backup

Sample is split by series of threshold cuts. At each stage, cut is taken that improves the "purity" of classification at next node.

Figure: A decision tree, where the features are labelled as $\{xi, xj, xk\}$. The first cut is on xi at value xi = c1. This process is continued until some stopping criteria is reached. The leaf nodes are labelled as background, B, or signal, S.

Gradient Boosted Decision Tree

COMET Tracking

Ewen Gillies

New Physics & CLFV

COMET Design Principles

New Tracking Techniques Local-Level GBDT Neighbour-Level GBDT Hough Transform Track-Level GBDT

Backup

Gradient boosting takes a weighted sum of decision trees. The weights are determined to minimize a loss function that describes misclassification rate. For a hit with a vector of features f:

Decision Tree *i*: $h_i(\mathbf{f}) = +1 \text{ or } -1$ GBDT: $y_{\text{Grad}}(\mathbf{f}, \mathbf{b}) = \sum_{i=0}^{N_{\text{trees}}} b_i h_i(\mathbf{f})$ Loss Function: $F(y_{\text{Grad}}, y) = -2 [y \cdot y_{\text{Grad}} + \ln (1 + e^{y_{\text{Grad}}})]$

Minimising this function with respect to the weights ${\bf b}$ fully determines the GBDT.

Shape Feature

COMET Tracking

Ewen Gillies

New Physic & CLFV

COMET Design Principles

New Tracking Techniques Local-Level GBDT Neighbour-Level GBDT Hough Transform Track-Level GBDT

Backup

All signal hits should be part of a track that forms a helix in 3D space.

Projecting the track onto a slice of the cylindrical detector gives a circular shape.

Stereo angles of the wire array causes displacement of circle between even and odd layers.

Track Centre Layout

COMET Tracking

- Ewen Gillies
- New Physics & CLFV
- COMET Design Principles
- New Tracking Techniques Local-Level GBDT Neighbour-Level GBDT Hough Transform Track-Level GBDT
- Backup

- Dark outer dots are wires, i.e. points in (x, y).
- Lighter central dots track
 - centers, i.e.
 - points in (*a*, *b*).
- Location of track centers is dictate by geometry, spacial resolution taken to match wire spacing.

Defining the Hough Transform

COMET Tracking

Ewen Gillies

New Physics & CLFV

COMET Design Principles

New Tracking Techniques Local-Level GBDT Neighbour-Level GBDT Hough Transform Track-Level GBDT

Backup

Define likelihood that a track centred at position \mathbf{r}_i contains a hit wire j at position \mathbf{r}_j as T_{ij} .

- **T** is the Hough Transform matrix of shape $[N_{\text{tracks}}, N_{\text{wires}}]$
- **W** is the hit wire vector of length [*N*_{wires}], i.e. *W_j* = 1 for a hit and *W_j* = 0 for no hit.
- **C** is the track center vector of length [*N*_{tracks}], where *C_i* is the likelihood that a signal track exists at track centre *i*.

Inverse Transform

Optimizing the Hough Transform [1]

COMET Tracking

Ewen Gillies

New Physics & CLFV

COMET Design Principles

New Trackin, Techniques Local-Level GBDT Neighbour-Level GBDT Hough Transform Track-Level GBD

Backup

How do we define T_{ij} ? Recover the distribution of the radii of signal tracks directly from simulation. Each track has an associated particle, with transverse momentum p_T .

Distribution of Signal Track Radius in All Events 0.25 Vormalised Distribution of Signal Tracks 0.20 Average the p_T from each hit in an event, then recover the signal radius 0.15 for the event. Sig.Hits 0.10 $r_{\rm Sig.}$ 0.05 0.00L 10 20 25 30 5 15 35 Event-wise Signal Radius [cm]

COMET Tracking

Ewen Gillies

New Physics & CLFV

COMET Design Principles

New Tracking Techniques Local-Level GBDT Neighbour-Level GBDT Hough Transform Track-Level GBDT Backup Fit this distribution directly to recover values for T_{ij} . For distance $d_{ij} = |\mathbf{r}_i - \mathbf{r}_j|$ between track centre *j* and wire *i*:

$$T(d_{ij}) = T_{ij} \propto \begin{cases} \exp\left(\frac{[d_{ij} - r_{\rm sig}]^2}{2\sigma_{\rm sig}^2}\right) & : r_{\rm min} < d_{ij} < r_{\rm sig} \\ 1 - \frac{d_{ij} - r_{\rm sig}}{r_{\rm max} - r_{\rm sig} + 0.1} & : r_{\rm sig} < d_{ij} < r_{\rm max} \\ 0 & : \text{ else} \end{cases}$$

This is half a Gaussian centred around the signal radius for smaller radii and a linear drop off for larger radii.

The parameters are the signal radius, r_{sig} , the spread for lower values, σ_{sig} , and the minimal and maximal radii considered, r_{min} and r_{max} .

Optimizing the Hough Transform [3]

ROC Curve: Previous Result

COMET Tracking

Zoomed ROC curves for previous sample

New Physics & CLFV

COMET Design Principles

New Tracking Techniques Local-Level GBDT Neighbour-Level GBDT Hough Transform Track-Level GBDT

Backup

Feature Evaluation

COMET Tracking

Ewen Gillies

New Physics & CLFV

COMET Design Principles

New Tracking Techniques Local-Level GBDT Neighbour-Level GBDT Hough Transform

Backup

The feature importance evaluates how often a feature was used to split a node.

COTTRI Board

COMET Tracking

Ewen Gillies

New Physics & CLFV

COMET Design Principles

New Tracking Techniques Local-Level GBDT Neighbour-Level GBDT Hough Transform Track-Level GBDT

Backup

