Optimization of data taking

Data taking scheme

1. Taking data at one point (just for m_W) $\sqrt{}$

2. Taking data at two points (both m_W and Γ_W) $\sqrt{}$

3. Taking data at three points (m_W , Γ_W and the correlated syst. uncertainties).

With $L = 3.2 \ ab^{-1}$, $\epsilon P = 0.72$

Taking data at three point

- 1. Fit parameters: m_W , Γ_W , h(associated with σ_{sys}^{corr})
- 2. Scan parameters: E_1 , E_2 , E_3 , F_1 , F_2 (*L* normalization factors)
- 3. Scan procedure:
 - A. $E_1, E_2, E_3 \in (154, 165)$ GeV, $F_1, F_2 \in (0,1), \Delta E_i = 1, \Delta F_i = 0.1$ (σ_{stat})

B. $E_1 \in (154, 160), E_2, E_3 \in (160, 164), F_1 \in (0, 0.5), F_2 \in (0, 1), \Delta F_2 = 0.2 (\sigma_{stat} + \sigma_{sys}^{corr})$

C. Get the Δm_W , $\Delta \Gamma_W$ with optimization result from b($\sigma_{stat} + \sigma_{sys}^{corr} + \Delta E + \Delta E_{BS}$)

Step A: E_1, E_2

The z axis is the cumulation of the fit result. The edge of the distributions will affect the optimization results.

 E_1 <160, E_2 >160 GeV is used in further optimization

Step A: E_1, E_2

The optimal regions of E_1 , E_2 are similar as two data points: $E_1 \sim (157, 158)$ GeV, $E_2 \sim (162, 163)$ GeV

Step A: F_1

The optimal region of F_1 is similar as two data points: $F_1 \sim 0.3$

Step B

1. Use the rough results from step A, the requirements below are used: $\begin{array}{c} E_1 \in (155,160) \\ E_2 \in (160,164) \\ E_3 \in (160,164) \\ F_1 = 0.3, F_2 \in (0,1) \\ \end{array}$ the $\sigma_{sys}^{corr} = 2 \times 10^{-4}$ is considered in the fit.

- 2. For each specific fit, 200 samplings are used, $\sigma_{WW} \sim G(\sigma_{WW}^0, \sigma_{sys}^{corr})$
- 3. So we can get the direct fit results ($N_1 = N_{scan} \cdot 200$), and the results by fitting the distributions of m_W , Γ_W of each fit result ($N_2 = N_{scan}$).

Step B: *E*₁, *E*₂

Step B: F_2

The $F_2 = 0.9$ is used in further study

Step B: E_3

The minimal result favors $E_3 \sim 161.5 \text{ GeV}$

Step C

1. Use the rough results from step A, the requirements below are used:

 $E_{1} = 157.5, E_{2} = 162.5, E_{3} = 161.5, F_{1} = 0.3, F_{2} = 0.9$ $\sigma_{sys}^{corr} = 2 \times 10^{-4}, \Delta E = 0.5 \text{ MeV}, E_{BS} = 1.6 \times 10^{-3}, \Delta E_{BS} = 0.01$ 2. $\sigma_{WW} \sim G(\sigma_{WW}^{0}, \sigma_{sys}^{corr}), E \sim G(E_{p}^{0}, \Delta E) + G(E_{m}^{0}, \Delta E)$, the description about E_{BS} can be found in backup.

3. By 500 samplings, we fit the distributions of m_W , Γ_W , and the corresponding uncertainties are : $\Delta m_W \sim 1 \text{ MeV}$, $\Delta \Gamma_W \sim 2.8 \text{ MeV}$

Summary and next to do

1. With the configurations :

$$L = 3.2 \ ab^{-1}$$
, $\epsilon P = 0.72$, $\sigma_{sys}^{corr} = 2 \times 10^{-4}$
Δ*E*=0.5 MeV, E_{BS}=1.6×10⁻³, Δ*E_{BS}*=0.01

If we taking data at:

- a. One points: $\Delta m_W \sim 0.9$ MeV at 162.5 GeV
- b. Two points: $\Delta m_W \sim 1.0$ MeV, $\Delta \Gamma_W \sim 2.9$ MeV ($E_1 = 157.5$, $E_2 = 162.5$ GeV, $F_1 = 0.3$)
- c. Three points: $\Delta m_W \sim 1.0$ MeV, $\Delta \Gamma_W \sim 2.8$ MeV ($E_1 = 157.5$, $E_2 = 161.5$, $E_3 = 162.5$ GeV, $F_1 = 0.3$, $F_2 = 0.1$)
- 2. The more precise scan will be performed with the preliminary results.

Backup

Taking data at one point (just for m_W)

There are two special energy points for just measuring m_W :

1. The one where most statistical sensitivity to m_W :

 $\Delta m_W(\text{stat.}) = \left(\frac{d\sigma_{WW}}{dm_W}\right)^{-1} \frac{\sqrt{\sigma_{WW}}}{\sqrt{L\epsilon P}} \approx 0.59 \text{ MeV at } E = 161.2 \text{ GeV (with } \Delta \Gamma_W \text{ effect)}$

2. The one where $\frac{\partial \sigma_{WW}}{\partial \Gamma_W} = 0$ at $E \approx 162.5$ GeV ($\Delta m_W 0.68$ MeV, but no $\Delta \Gamma_W$ effect)

Systematic uncertainty for data taking at one point

$$N_{tot} = L \cdot \sigma_{WW}(E) \cdot \frac{\epsilon}{P}$$

$$\Delta m_W(\sigma_{WW}) = \frac{\partial m_W}{\partial \sigma_{WW}} \Delta \sigma_{WW}$$

$$\Delta m_W(\Gamma_W) = \frac{\partial m_W}{\partial \sigma_{WW}} \frac{\partial \sigma_{WW}}{\partial \Gamma_W} \Delta \Gamma_W \dots$$

$$\sigma^{sys}(corr.) = \sqrt{\Delta L^2 + \Delta \sigma_{WW}^2 + \Delta \epsilon^2 + \Delta P^2}$$

With ΔL	$(\Delta \sigma_{WW}, \Delta \epsilon, \Delta P) < 1$	0^{-4} , σ^{sys} (cor	r.)<2 × 10^{-4}
-----------------	---	--------------------------------	-------------------

	E=161.2 GeV	E = 162.5 GeV
σ^{sys} (corr.)	0.35	0.44
ΔE (0.5 MeV)	0.36	0.37
$\Delta E_{BS}(1\%)$	0.12	-
$\Delta\Gamma_W$ (42 MeV)	8	-

Taking data at two energy points

To measure both Δm_W and $\Delta \Gamma_W$, we scan the energies and the luminosity fraction of the two data points:

1. *E*₁, *E*₂ ∈ [155, 165] GeV, Δ*E* = 0.1 GeV
2. *F*
$$\left(\frac{L_1}{L_2}\right)$$
 ∈ (0, 1), Δ*F* = 0.05

E_{1}, E_{2}

For further study, the two requirements are preformed: $\Delta m_W(\Delta \Gamma_W) \in (0.5, 4.5)$ MeV, the scatter plot of E_1, E_2 is divided into two parts corresponding.

17

$\Delta m_W, \Delta \Gamma_W$ vs E_1, E_2

$(\Delta m_W + A \cdot \Delta \Gamma_W)$ vs $E_1 = E_2 \sim 162.5 \text{ GeV},$

*E*₁~157.5 GeV

 $(\Delta m_W + A \cdot \Delta \Gamma_W)$ vs F

Systematic uncertainty for data taking at two point

 E_1 =157.5GeV, E_2 =162.5 GeV, σ^{sys} (corr.) = 2 × 10⁻⁴(relative) With : Just the quadratic sum ΔE_{RS} =1.6 × 10⁻³ (relative), ΔE =0.5 MeV without the ΔE_{BS} ***** Δm_W (Mev) $\Delta\Gamma_W$ (MeV) ***** F Sys. Sys. Total Stat. Total Stat. σ_{tot}^{sys} σ_{tot}^{sys} σ (corr.) ΔE_{BS} ΔE_{BS} ΔE σ (corr.) ΔE 0.47 0.35 0.31 0.52 0.43 0.1 0.71 0.92 4.6 0.74 4.7 -0.15 0.73 0.47 0.37 0.94 3.7 0.28 0.52 0.55 0.8 3.8 -0.2 0.37 0.26 0.52 0.76 0.45 0.96 3.3 0.60 0.84 3.4 -0.37 0.25 0.78 0.46 0.98 3.0 0.23 0.51 0.76 0.94 3.1 -0.38 2.9 0.3 0.81 0.48 1.02 2.7 0.22 0.54 0.88 1.06 -

$$\sigma^{sys}$$
(corr.) ($\sqrt{\Delta L^2 + \Delta \sigma_{WW}^2 + \Delta \epsilon^2 + \Delta P^2}$)

Considering the σ^{sys} (corr.), the σ_{WW} becomes: $\sigma_{WW} \sim G(\sigma_{WW}^0, \sigma^{sys}$ (corr.)) We simulate data with σ_{WW} , and use σ_{WW}^0 in fit.

 σ^{sys} (corr.) = 2 × 10⁻⁴ (relative). By 500 samplings, the results are shown below (the uncertainty of each value is $1.5 - 2.0 \times 10^{-5}$)

F	0.1	0.15	0.2	0.25	0.3
Δm_W (MeV)	0.47	0.47	0.45	0.46	0.48
$\Delta\Gamma_W$ (MeV)	0.31	0.28	0.26	0.23	0.22

ΔE

With the ΔE , the total energy becomes:

$$E = G(E_p, \Delta E) + G(E_m + \Delta E)$$

With ΔE = 0.5 MeV and 500 samplings:

F	0.1	0.15	0.2	0.25	0.3
Δm_W (MeV)	0.35	0.37	0.37	0.37	0.38
$\Delta\Gamma_W$ (MeV)	0.52	0.52	0.52	0.51	0.54

Uncertainty of each value is $0.6 - 1 \times 10^{-5}$

$$\Delta E_{BS}$$

With the
$$\Delta E_{BS}$$
, the σ_{WW} becomes:

$$\sigma_{WW}(E) = \int_0^\infty \sigma(E') \times G(E, E') dE'$$

$$= \int_{E-6\sqrt{2}E_{BS}}^{E+6\sqrt{2}E_{BS}} \sigma(E') \times \frac{1}{\sqrt{2\pi}\sqrt{2}E_{BS}} e^{\frac{-(E-E')^2}{2(\sqrt{2\pi}E_{BS})^2}} dE'$$

For simulation $E_{BS} = E_{BS}^0 + \Delta E_{BS}$, and E_{BS}^0 for fit.