Update of Ω_c^0 lifetime measurement

Ao Xu

Tsinghua University

 Ω_c^0 lifetime measurement meeting

June 26, 2018

Mass fit

- Define diffrent mass regions in the mass spectrum
 - Sideband: $[1820, 1830] \cup [1910, 1920]$
 - SignalWindow: $[1865 2.5 \times \sigma, 1865 + 2.5 \times \sigma]$
- \blacksquare Fit to the D0_M of data sample that passed all selctions
- For background: SignalWindow/Sideband = 1.439
- For signal: SignalWindow/TotalRegion = 0.987

$\log \chi^2_{IP}$ modelling

Bukin function, a modified Novosibirsk function with extended tail parameters

$$\mathcal{P}(x;\mu,\sigma,\xi,\rho_{1},\rho_{2}) = \begin{cases} \exp\left\{\frac{(x-x_{1})\xi\sqrt{\xi^{2}+1}\sqrt{2\ln 2}}{\sigma\left(\sqrt{\xi^{2}+1}-\xi\right)^{2}\ln\left(\sqrt{\xi^{2}+1}+\xi\right)} + \rho_{1}\left(\frac{x-x_{1}}{\mu-x_{1}}\right)^{2} - \ln 2\right\} & x \leq x_{1}, \\ \exp\left\{-\left[\frac{\ln\left(1+2\xi\sqrt{\xi^{2}+1}\frac{x-\mu}{\sigma\sqrt{2\ln 2}}\right)}{\ln\left(1+2\xi^{2}-2\xi\sqrt{\xi^{2}+1}\right)}\right]^{2} \times \ln 2\right\} & x_{1} < x < x_{2}, \\ \exp\left\{\frac{(x-x_{2})\xi\sqrt{\xi^{2}+1}\sqrt{2\ln 2}}{\sigma\left(\sqrt{\xi^{2}+1}-\xi\right)^{2}\ln\left(\sqrt{\xi^{2}+1}+\xi\right)} + \rho_{2}\left(\frac{x-x_{2}}{\mu-x_{2}}\right)^{2} - \ln 2\right\} & x \geq x_{2}. \end{cases}$$

where

$$x_1 = \mu + \sigma \sqrt{2 \ln 2} \left(\frac{\xi}{\sqrt{\xi^2 + 1}} - 1 \right)$$
$$x_2 = \mu + \sigma \sqrt{2 \ln 2} \left(\frac{\xi}{\sqrt{\xi^2 + 1}} + 1 \right)$$

Ao Xu, Tsinghua University

Fit to IPCHI2 of MC sample

- Fit with all parameters free
- Prompt component (left) and secondary component (right)

Fit to IPCHI2 of data sample

- Approach 1: Fit to data in the SignalWindow
 - Fixed parameters: prompt shape parameters
 - Fix background contribution with shape of sideband data and number of backgrounds normalized to SignalWindow
- Approach 2: Fit to sWeighted data
 - Fixed parameters: prompt shape parameters

- Distributions of two approaches agree well
 - IPCHI2 of sideband background sample and total sample with background sWeight (left)
 - IPCHI2 of SignalWindow sample with sideband-background subtraction and total sample with signal sWeight (right)

Sample	MC	MC	KeysPdf	KeysPdf	sWeight	sWeight
Component	prompt	secondary	prompt	secondary	prompt	secondary
μ	0.30 ± 0.02	1.55 ± 0.09	0.38 ± 0.00	1.68 ± 0.04	0.37 ± 2.72	1.81 ± 7.55
σ	0.45 ± 0.01	1.04 ± 0.03	0.45	0.93 ± 0.06	0.45	0.70 ± 66.88
ξ	-0.17 ± 0.02	-0.05 ± 0.07	-0.17	-0.19 ± 0.04	-0.17	-0.12 ± 13.23
ρ_1	-0.05 ± 0.02	-0.83 ± 0.31	-0.05	-0.86 ± 0.39	-0.05	-3.93 ± 226.48
$\rho 2$	-0.62 ± 0.17	-2.62 ± 0.95	-0.62	-0.67 ± 0.15	-0.62	-0.24 ± 29.02
Nprompt	5938 \pm 77	-	137359 ± 1978	-	151298 ± 785915	-
Nsecondary	-	1597 ± 40	-	49450 ± 2022	-	38202 ± 802666

Ao Xu, Tsinghua University

Lifetime measurement

IPCHI2 in different decay time bins

- Binning: [-0.005, 0., 0.001, 0.002, 0.003, 0.005, 0.01] ns
- sWeight from total mass fit (left) and mass fits in each decay time bin (right)

Fit to IPCHI2 in different decay time bins

- Fix to the same prompt parameters
- The 3rd and 4th bin STATUS=NOT POSDEF

MC request

- Re-decay fast simulation sample (Progress: 50%)
 - evt+std:

//MC/2016/26104081/Beam6500GeV-2016-MagDown-Nu1. 6-25ns-Pythia8/Sim09d-ReDecay01/Trig0x6138160F/Reco16/ Turbo03/Stripping28r1NoPrescalingFlagged/ALLSTREAMS.DST

- evt+std://MC/2016/26104081/Beam6500GeV-2016-MagUp-Nu1.
 6-25ns-Pythia8/Sim09d-ReDecay01/Trig0x6138160F/Reco16/ Turbo03/Stripping28r1NoPrescalingFlagged/ALLSTREAMS.DST
- Additional option to improve the statistics (ongoing)
 - Generator-level PT and P cuts of PT> 400 ${\rm MeV}$ and P> 800 ${\rm MeV}$ are safe

Backup slides

Samples of $D^{*+} \rightarrow D^0 (\rightarrow K^- K^+ \pi^- \pi^+) \pi^+$ mode

- Data sample
 - 2016 Collision data collected by Hlt2CharmHadDstp2D0Pip_D02KmKpPimPipTurbo
- 2016 MC sample
 - EventType: 27165003
 - Identify prompt contribution with D^{*+} MOTHER ID

DaughtersCuts	TRCHI2DOF < 3.0 PT > 250.0 P > 1000.0 MIPCHI2DV(PRIMARY) > 3.0
К	PIDK > 5
π	PIDK < 5
CombinationCuts	(APT1+APT2+APT3+APT4) > 1800.0 AP > 25000.0 ADOCA(i,4) < 100.0, i=1,2,3 ACHI2DOCA(i,4) < 10.0, i=1,2,3
MotherCuts	CH12VXNDOF < 12.0 PT > 2000.0 P > 30000.0 BPVDIRA > cos(0.02) BPVLTIME() > 0.0001 BPVVDCH12 > 25

- Additional PT cuts due to generator-level cuts in MC sample
- Further PID cuts to be consistent to signal channel

Variable	Cuts		
D0_PT	> 2900 MeV		
Daughters' PT	$> 300 { m MeV}$		
Daughters' P	$2900 \mathrm{MeV}$		
K PIDK	> 10		
π PIDK	< 0		

BDT with MC sample as signal

- Try to train with MC sample as signal and sideband data sample as background
- Similar training variables as signal mode: Vertex quality, PT, IPCHI2 (not include PID variables)
- Correlation matrices below

Ao Xu, Tsinghua University

BDT performance

- BDT response (left) and ROC curve (right)
- Choose BDT> -0.1 to get high signal efficiency and improved signal/background ratio

Training variables with sWeighted sample as signal

Ao Xu, Tsinghua University

Lifetime measurement

Training variables with sWeighted sample as signal

Ao Xu, Tsinghua University

Lifetime measurement

Turbo selections of $\Omega_c^0 \rightarrow p K^- K^- \pi^+$

Items	Cuts
Daughter K	(TRCHI2DOF<3) (PT>500.)
	(P>1000.)
	(PIDK>10.) (MIDCHI2DV(DRIMARY) > 4.0)
Daughter π	(MIPCHI2DV(PRIMARY) > 4.0) (TRCHI2DOF<3)
Doughter #	(PT>500.)
	(P>1000.)
	(PIDK<0.) (MIDCHI2DW(DRIMARY) > 4.0)
Daughter n	(TRCHI2DV(FRIMART) > 4.0) (TRCHI2DOF<3)
P	(PT>500.)
	(P > 10000.)
	(PIDp > 10.0) & ((PIDp-PIDK) > 5.0) (MIPCHI2DV(PRIMARY) > 4.0)
<u> </u>	$(\operatorname{init}\operatorname{OHi2DV}(\operatorname{I}\operatorname{InitiAl(I)}) > 4.0)$
CombinationCut	$(\text{in}_{\text{range}}(2386.0, \text{AM}, 2780.0))$ $((\text{APT1}_{\text{APT2}} \text{APT3}_{\text{APT4}}) > 3000.0)$
	(AHASCHILD(PT > 1000.0))
	(ANUM(PT > 500.0) >= 2)
	(AHASCHILD((MIPCHI2DV(PRIMARY)) > 8.0)) $(ANUM(MIPCHI2DV(PRIMARY) > 6.0) >= 2)$
MotherCut	(VFASPF(VCHI2PDOF) < 10.0)
	$(BPVDIRA > \cos(0.01))$
	(BPVLTIME() > 0.0001) (BPVVDCHI2 > 10.0)