Ω_c^0 lifetime measurement

Ao Xu

Tsinghua University

 Ω_c^0 lifetime measurement meeting February 19, 2019

Outline

- 1. Data and simulation
- 2. Prompt yield extraction
 - Strategy to extract prompt yields
 - Fit to MC samples of signal, normalization and control modes
 - Sanity checks
 - Fit to D⁰ data
- 3. Efficiency estimation
 - Comparison of Dalitz distributions for MC and data of D^0 mode
 - Comparison of kinematic distributions for MC and data of D^0 mode
 - Comparison of topological distributions for MC and data of D^0 mode
 - Comparison of samples with different L0 trigger
 - Comparison of event multiplicity
 - Corrections to MC by weighting
 - Decay time distribution with MC corrections

Section 1

Data and simulation

2016 data and simulation samples available for this analysis

Modes	Data	MC	
signal	$\Omega_c^0 \rightarrow p K^- K^- \pi^+$	Turbo	ReDecay $ au = 250 \mathrm{fs}, 500 \mathrm{fs}$
normalization	$\equiv^0_c \rightarrow pK^-K^-\pi^+$	Turbo	ReDecay
control	$\Omega_b^- \to \Omega_c^0 (\to p K^- K^- \pi^+) \pi^-$	Stripping	Full Sim.
control	$\Omega_{b}^{-} \rightarrow \Omega_{c}^{0} (\rightarrow p K^{-} K^{-} \pi^{+}) \mu^{-} \overline{\nu}_{\mu}$	Stripping	Full Sim. $ au = 250 \mathrm{fs}$
control	$\Xi_b^- \to \Xi_c^0 (\to p K^- K^- \pi^+) \mu^- \overline{\nu}_\mu$	Stripping	Full Sim.
control	$D^{*+} \rightarrow D^0 (\rightarrow K^- K^+ \pi^- \pi^+) \pi^+$	Turbo	ReDecay
control	$B^+ ightarrow \overline{D}{}^0 (ightarrow K^+ K^- \pi^+ \pi^-) \pi^+$	Stripping	Full Sim.

Section 2

Prompt yield extraction

Strategy to extract prompt yields

- Contamination from *b*-hadron decays is evident in large decay time bins
- Use $\log_{10}(\chi^2_{IP})$ as discriminating variable
- Model the prompt and secondary components with the Bukin function

$$\mathcal{P}(x;\mu,\sigma,\xi,\rho_{1},\rho_{2}) = \begin{cases} \exp\left\{\frac{(x-x_{1})\xi\sqrt{\xi^{2}+1\sqrt{2\ln 2}}}{\sigma\left(\sqrt{\xi^{2}+1}-\xi\right)^{2}\ln\left(\sqrt{\xi^{2}+1}+\xi\right)} + \rho_{1}\left(\frac{x-x_{1}}{\mu-x_{1}}\right)^{2} - \ln 2\right\} & x \leq x_{1}, \\ \exp\left\{-\left[\frac{\ln\left(1+2\xi\sqrt{\xi^{2}+1}\frac{x-\mu}{\sigma\sqrt{2\ln 2}}\right)}{\ln\left(1+2\xi^{2}-2\xi\sqrt{\xi^{2}+1}\right)}\right]^{2} \times \ln 2\right\} & x_{1} < x < x_{2}, \\ \exp\left\{\frac{(x-x_{2})\xi\sqrt{\xi^{2}+1}\sqrt{2\ln 2}}{\sigma\left(\sqrt{\xi^{2}+1}-\xi\right)^{2}\ln\left(\sqrt{\xi^{2}+1}+\xi\right)} + \rho_{2}\left(\frac{x-x_{2}}{\mu-x_{2}}\right)^{2} - \ln 2\right\} & x \geq x_{2}. \end{cases}$$

where

$$x_1 = \mu + \sigma \sqrt{2 \ln 2} \left(\frac{\xi}{\sqrt{\xi^2 + 1}} - 1 \right)$$

Ao Xu, Tsinghua University

Illustration of the Bukin functions

Bukin functions with various asymetry and tail parameters with $\mu=0,\sigma=1,\rho_1=0$

Prompt and secondary MC samples

- Components after all selections

Validation needed with *b*-decay MC samples

Decay time t is defined as

$$t \equiv \frac{\vec{p} \cdot \vec{r}}{p^2} \times m$$

where \vec{p} is the momentum vector, \vec{r} the vector pointing from PV to decay vertex, and *m* the invariant mass of the charm hadron

- All fits converge with accurate error matrix
- μ : dependent on *t* with clear pattern for prompt and secondary
- σ : vary with t for prompt and secondary
- ξ : vary with t for prompt and secondary
- ρ_1, ρ_2 : vary with t for prompt and secondary

Fit results in decay-time bins: μ

Fit results in decay-time bins: σ

Fit results in decay-time bins: ξ

Fit results in decay-time bins: ρ_1

Fit results in decay-time bins: ρ_2

 \blacksquare Fit with all parameters free in equally-sized 20 decay time bins between 0.3 $\rm ps$ and 3 $\rm ps$

D^0 results in even decay-time bins: μ

D^0 results in even decay-time bins: σ

D^0 results in even decay-time bins: ξ

D^0 results in even decay-time bins: ho_1

D^0 results in even decay-time bins: ρ_2

- Check whether the fit can re-produce the input prompt fraction with MC samples
- Fit the combined (prompt+secondary) MC with free μ_{prompt} and $\mu_{\text{secondary}}$, while fixing other parameters to values of seperate fits

Comparison of input and extracted yield: Ω_c^0

Likelihood scan of μ_{prompt} and $\mu_{\mathrm{secondary}}$

• Ω_c^0 bin 0

Comparison of input and extracted yield: Ξ_c^0

Likelihood scan of μ_{prompt} and $\mu_{\mathrm{secondary}}$

■ Ξ⁰_c bin 4

Fit results of combined MC samples: D^0

Comparison of input and extracted yield: D^0

Sanity check: fit background-injected combined MC

- Check whether the fit can re-produce the input prompt fraction
- Fit the combination of prompt MC, secondary MC and background from data
 - Background sample is generated from the RooKeysPdf of mass-sideband data
 - Background sample size is determined from the signal/background ratio in data
 - logIPCHI2 of MC sample is shifted by 0.15 to match the data
- Fit configuration
 - μ_{prompt} and $\mu_{\mathrm{secondary}}$ free to float
 - Other parameters fixed to separately-fit results
 - Number of background fixed to the input value

Fit results of background-injected combined MC

Comparison of input and extracted yield: D^0

Mass fit

- In $1865 \pm 45 \,\mathrm{MeV}/c^2$ mass region
- Gaussian $+ 2^{nd}$ -order Chebychev
- IPCHI2 fit
 - In $1865 \pm 2.5 imes 5.65 \, \mathrm{MeV}/c^2$ signal region
 - Prompt and secondary signal components: μ_{prompt} and $\mu_{secondary}$ free and other parameters fixed to MC
 - Background: kernel estimation with mass-sideband data Lower sideband: [1820, 1830] MeV/c^2 Upper sideband: [1900, 1910] MeV/c^2
 - The total number of backgrounds fixed to values from mass fit
 - Binning scheme: the same as the signal mode

Comparison of background logIPCHI2

- MC cannot provide a large combinatorial background sample
- Real data is necessary for background studies

Physics backgrounds in $D^{*+} \rightarrow \pi^+ D^0 (\rightarrow K^- K^+ \pi^- \pi^+)$

- Λ_c^+ background: p mis-identified as K^-
- Suppressed by tight PID cuts

Physics backgrounds in $D^{*+} \rightarrow \pi^+ D^0 (\rightarrow K^- K^+ \pi^- \pi^+)$

• π swap: $D^{*+} \rightarrow \pi^+ D^0 (\rightarrow K^- K^+ \pi^- \pi^+)$

• Not significant due to tight χ^2_{IP} cuts

Physics backgrounds in $D^{*+} \rightarrow \pi^+ D^0 (\rightarrow K^- K^+ \pi^- \pi^+)$

- K^0_{s} background: $D^0 \rightarrow K^- K^+ K^0_{s} (\rightarrow \pi^+ \pi^-)$
- Exist but not significant in the signal region

Fit results of D^0 data

Fit results of yields

Comparison of data and MC: prompt fraction

Comparison of data and MC: $\mu_{\mathrm{prompt}} - \mu_{\mathrm{secondary}}$

Comparison of data and MC: prompt yield

Likelihood scan of μ_{prompt} and $\mu_{\mathrm{secondary}}$

Effect of initial values

Repeat the fit (bin 0) with random initial values in parameter space (µ_{prompt}, µ_{secondary}, N_{prompt}, N_{secondary})

Ao Xu, Tsinghua University

Lifetime measurement

- Study the effect of unequal binning scheme
- Fit data in equally-sized 20 decay time bins between 0.3 ps and 3 ps

Comparison of prompt yield in even decay-time bins

Section 3

Efficiency estimation

Comparison of Dalitz distributions for MC and data of D^0 mode

- Five variables are needed to describe the $D^0 o K^+ K^- \pi^+ \pi^-$ decay
- Choose Cabibbo-Maksymowicz (CM) variables
 - m(K⁺K⁻)
 - $m(\pi^+\pi^-)$
 - cos(θ^{K+K-}_{K+}): the cosine of the angle between the direction of the D⁰ and that of one of the kaons in the rest frame of the two kaons
 - cos(θ^{π+π-}_{π+}): the cosine of the angle between the direction of the D⁰ and that of one of the pions in the rest frame of the two pions
 - cos(φ): the cosine of the angle in the D⁰ rest frame between the plane defined by the directions of the two kaons and the plane defined by the directions of the two pions
- Data sWeights are calcualted from mass fit
- Decay time binning scheme: equally-sized 20 decay time bins between 0.3 ps and 3 ps

Comparison of $m(K^+K^-)$ in Bin 0

- No ϕ resonance in phase-space MC
- Prompt and secondary MC agree well

Comparison of $m(\pi^+\pi^-)$ in Bin 0

- No ρ resonance in phase-space MC
- Prompt and secondary MC agree well

Comparison of $\cos(\theta_{K^+}^{K^+K^-})$ in Bin 0

- Data-MC discrepency is small
- Data is not symmetric w.r.t. 0
- Prompt and secondary MC agree well

Comparison of $\cos(\theta_{\pi^+}^{\pi^+\pi^-})$ in Bin 0

- Data is not symmetric w.r.t. 0
- Prompt and secondary MC agree well

Comparison of $cos(\phi)$ in Bin 0

- Data is not symmetric w.r.t. 0
- Prompt and secondary MC agree well

Only the decay-time-dependent discrepency is relevant in this measurement

Decay time dependence of $m(K^+K^-)$

Decay-time dependent

Decay time dependence of $m(\pi^+\pi^-)$

Weakly decay-time dependent

Decay time dependence of $\cos(\theta_{K^+}^{K^+K^-})$

Decay-time independent

Decay time dependence of $\cos(heta_{\pi^+}^{\pi^+\pi^-})$

Decay-time independent

Decay time dependence of $\cos(\phi)$

Decay-time independent

Comparison of $p_{\rm T}$ (D^0)

Comparison of p_{T} (π^+)

Comparison of $p_{\rm T}$ (K⁻)

Comparison of samples with different L0 trigger

- LOHadronDecision_TOS v.s. LOGlobal_TIS && !LOHadronDecision_TOS
- $D^0 p_{\rm T}$ is quite different

Comparison of samples with different L0 trigger (cont.)

- LOHadronDecision_TOS v.s. LOGlobal_TIS && !LOHadronDecision_TOS
- Daughters' $p_{\rm T}$ is quite different

Ao Xu, Tsinghua University

Comparison of nTracks

- Weights are calculated sequentially by comparing the decay-time-integrated MC prompt sample and sWeighted data
 - PID weights from PIDCalib
 - Based on PID weights, calculate $(m(K^+K^-), m(\pi^+\pi^-))$ weights
 - Based on PID and $(m(K^+K^-), m(\pi^+\pi^-))$ weights, calculate $p_{\rm T}(D^0)$ weights
- cos(θ^{K+K⁻}_{K⁺}), cos(θ^{π+π⁻}_{π⁺}), cos(φ) not weighted due to weak dependence on decay time
- Here we assume the relevant distributions of the prompt and secondary components in data are the same

Comparison before and after corrections to MC

• Consider PID and $(m(K^+K^-), m(\pi^+\pi^-))$ weights

Comparison before and after corrections to MC (cont.)

• Consider PID and $(m(K^+K^-), m(\pi^+\pi^-))$ weights

Comparison before and after corrections to MC

• Consider PID, $(m(K^+K^-), m(\pi^+\pi^-))$ and $p_T(D^0)$ weights

Comparison before and after corrections to MC (cont.)

• Consider PID, $(m(K^+K^-), m(\pi^+\pi^-))$ and $p_T(D^0)$ weights

PID corrections with PIDCalib

- PID cuts applied: Kaon $DLL_{K\pi} > 10$ and Pion $DLL_{K\pi} < 0$
- Use PIDCalib to get the correct PID efficiency
- Use default binning scheme
 - *P*[GeV/c]:
 - $[\ 3.0, \ 9.3, \ 15.6, \ 19.0, \ 24.4, \ 29.8, \ 35.2, \ 40.6, \ 46.0, \ 51.4 \]$
 - [51.4, 56.8, 62.2, 67.6, 73.0, 78.4, 83.8, 89.2, 94.6, 100.0]
 - η: [1.5, 2.375, 3.25, 4.125, 5.0]

Performance histograms: (left) Magdown and (right) MagUp

Ao Xu, Tsinghua University

Lifetime measurement

Reweighting with Boosted Decision Trees

- Try to reweight MC with GBReweighter from the hep_ml package, a reweighter algorithm based on ensemble of regression trees
 - PID weights from PIDCalib
 - Based on PID weights, calculate

 $w(m(K^+K^-), m(\pi^+\pi^-), \cos(\theta_{K^+}^{K^+K^-}), \cos(\theta_{\pi^+}^{\pi^+\pi^-}), \cos(\phi))$

- Build unbiased predictions with folding algorithm
 - training data is splitted into n equal parts
 - train n reweighters, each one is trained using n-1 folds
 - predict each event with the reweighter that did not use it during training
- Here we assume the relevant distributions of the prompt and secondary components in data are the same, i.e. subtract the background in real data by fitting the mass spectrum

Comparison before and after corrections to MC

Reweighting with GBReweighter

Comparison before and after corrections to MC (cont.)

Reweighting with GBReweighter

Decay time distribution with MC corrections

BACKUP

Fit mass of D^0 data

