Issue with ProbNNp in $\Lambda^0 \to p\pi$ sample

Anton Poluektov

University of Warwick, UK

29 September 2017

ProbNNp distributions in Run2

Issue first seen by Abhijit in his $\Xi_b \to pKK$ analysis. Resampling of ProbNNp variable in Run1 (left) and Run2 (right). Control channel $B \to p\bar{p}K$.

Some difference in Run1 due to loose PIDp cut in the stipping, but Run2 a lot worse in high-ProbNNp region.

(All kinematic distibutions are reweighted, so the difference is due to PID response only).

ProbNNp distributions in Run2

After some investigations with $\Lambda_b \to \Lambda_c \pi$ sample, issue tracked down to the dependence of ProbNNp distibution on track displacement from PV. Run1 used IncLc sample, while Run2 uses $\Lambda \to p\pi$. Λ 's are long-lived.

Resampled ProbNNp'= $1-(1-\text{ProbNNp})^{0.25}$ distibutions with MINIPCHI2< 100 (red) and MINIPCHI2> 400 (pink), tracks, sWeighted data (black).

ProbNNp and PIDp distibutions in narrow Pt,Eta bins

Disagreement is more pronounced for high-momentum tracks. No significant disageement for PIDp

Variables intering ProbNN

Distributions for variables entering ProbNN's, for MINIPCHI2 $\!<\!100$ (black) and MINIPCHI2 $\!>\!400$ (red)

Variables intering ProbNN

Distributions for variables entering ProbNN's, for MINIPCHI2 < 100 (black) and MINIPCHI2 > 400 (red)

Variables intering ProbNN

Distributions for variables entering ProbNN's, for MINIPCHI2 $\!<\!100$ (black) and MINIPCHI2 $\!>\!400$ (red)

Alternative calibration: $\Lambda_b \to \Lambda_c \pi$

Tempoary solution adopted for $\Xi_b \to pKK$ analysis: use $\Lambda_b \to \Lambda_c \pi$ as a calibation sample.

Corresponding templates are available in PIDGen as " $p_LbLcPi_MC15TuneV1_ProbNNp_Brunel$ ".

Red: resampling from $\Lambda_b \to \Lambda_c \pi$ calibration, pink: $\Lambda \to p\pi$ calibration.

ProbNNp' and ProbNNp

Note that the disagreement is apparent in the transformed variable,

 $ProbNNp'=1-(1-ProbNNp)^{0.25}$ (left) where the region with ProbNNp=1 is zoomed in.

In ProbNNp (right), this corresponds to the region around ProbNNp \simeq 0.95, so should only affect you if you are cutting *very* tight on ProbNNp, or using it in the MVA.

Discussion

- ProbNN variables are correlated with track displacement (e.g. MINIPCHI2).
 - Via tracking variables, such as ghost probability, track χ^2 .
 - Causes problems if calibration sample has different lifetime than your signal.
- This becomes apparent for ProbNNp in Run2
 - Only available calibration sample: $\Lambda \rightarrow p\pi$, long lived
 - CombDLL seem not affected, ProbNNpi,K much less than ProbNNp
 - Disagreement is pronounced for high-P tracks, around ProbNNp> 0.9
- Issue is possibly present in Run1 as well, but there we have IncLc.
 - No corresponding variables in PIDCalib samples to check.
- Possible fixes:
 - Use $\Lambda \to p\pi$, but cut MINIPCHI2< X for calibation: loose stats, still biased
 - Use $\Lambda \rightarrow p\pi$, but reweigh tracking distributions?
 - Use $\Lambda_b \to \Lambda_c \pi$, but low stats
 - Use SL $\Lambda_c \mu$, but $P_T > 1$ GeV cut on proton (can be relaxed)?
 - Resurrect IncLc sample?