

$H \rightarrow \gamma \gamma$ channel branching ratio measurement in CEPC

Fangyi Guo, USTC

Feng Wang, IHEP Yitian Sun, UChicago

Workshop on the Circular Electron-Positron Collider 25th May, 2018, Rome

Content

- Motivation
- Monte-Carlo Samples
- Simulation
- Event selection
- Fit model
- Results
- Comparison due to different magnetic fields
- Further work
- Conclusion

Motivation

- Standard Model Higgs physics is one of the major topic in the CEPC
- CEPC project
 Electron-Positron collider, operate as Higgs Factory
 Hope to have more precise measurement in Higgs-relative parameters.
- In center of mass energy $\sqrt{s} \sim 250 GeV$ in lepton collider, the Higgsstrahlung(ZH) process is the main production mode
- Design point:

preCDR(CEPC_v1): $\sqrt{s} = 250 GeV$, magnetic field B=3.5T, etc. Present(CEPC_v4): $\sqrt{s} = 240 GeV$, magnetic field B=3.0T, etc.

Motivation

• Br $(H \rightarrow \gamma \gamma) \approx 0.227\%$, low branching ratio but clean final state topology.

The measurement should achieve a relative high precision.

- Present results from LHC ATLAS group: $\mu_{global}=0.99^{+0.14}_{-0.13}~(\mathcal{L}=36.1fb^{-1})$

Arxiv:1802.04146

• Difficulty:

Complex background components

Low $Br(H \rightarrow \gamma \gamma)$ VS. Large background process XS

Monte Carlo Samples

(Generated with Whizard1.95, include ISR)

• Signal

$ee \rightarrow ZH \rightarrow ll\gamma\gamma$	
$ee \rightarrow ZH \rightarrow qq\gamma\gamma$	100k events
$ee \rightarrow ZH \rightarrow \nu\nu\gamma\gamma$	per channel

 $ee \rightarrow ZH, H \rightarrow \gamma\gamma, Z \rightarrow inclusive$ 400k totally

Monte Carlo Samples

• Background Components

Similar final states with ISR photon

Signal	Background	Dominant one(chosen one)	Generated event number
$\frac{ZH}{\rightarrow ll + \gamma\gamma}$	$ee \rightarrow Z \rightarrow ee/\mu\mu/\tau\tau$ +ISR photon $ee \rightarrow WW \rightarrow l\nu l\nu$ +ISR photon $ee \rightarrow ZZ \rightarrow ll\nu\nu$ +ISR photon	$ee \rightarrow Z \rightarrow ee/\mu\mu/\tau\tau$ +ISR photon	~26M(μμ)+10M(ττ)
$ZH \\ \rightarrow qq + \gamma\gamma$	$ee \rightarrow Z \rightarrow qq$ +ISR photon $ee \rightarrow WW \rightarrow qq\gamma\gamma$ $ee \rightarrow ZZ \rightarrow qq\nu\nu$ +photon	$ee \rightarrow Z \rightarrow qq$ +ISR photon	20M
$ZH \\ \rightarrow \nu\nu + \gamma\gamma$	$ee \rightarrow Z \rightarrow vv$ +photon Other $ee \rightarrow invisible$ process+photon	$ee \rightarrow Z \rightarrow \nu\nu$ +photon	200M

Simulation

• Full simulation

Use Geant4-based tools to simulate the detector response $ee \rightarrow ZH$, $H \rightarrow \gamma\gamma$, $Z \rightarrow inclusive$ signal sample

• Fast simulation

Smear the objects with the resolutions and efficiencies from full simulation $ee \rightarrow ZH \rightarrow ll/qq/\nu\nu + \gamma\gamma$ signal samples All background samples

Event selection $--qq\gamma\gamma$ channel

- Signal: $ee \rightarrow ZH \rightarrow qq\gamma\gamma$
- Background: $ee \rightarrow qq\gamma\gamma$

Whizard1.95+Fast simulation, B=3.0T, $\sqrt{s} = 240 GeV$

- Photon: 2 on-shell photon whose invariant mass is closest to $m_H = 125 GeV$
- Jets: Force the other particles into 2 jets
- Define:
 - γ_1/j_1 : photon/jet with lower energy
 - γ_2/j_2 : photon/jet with higher energy

Event selection $--qq\gamma\gamma$ channel distribution

2018/5/24

gfy@mail.ustc.edu.cn

Event selection $--qq\gamma\gamma$ channel selection criteria

 $E_{\nu 1} > 35 GeV$ $35GeV < E_{\nu 2} < 96GeV$ $cos\theta_{\nu\nu} > -0.95, cos\theta_{ii} > -0.95$ Cosine polar angle between two photons/ two jets $pT_{\nu 1} > 20GeV, pT_{\nu 1} > 30GeV$ $110 GeV < m_{\nu\nu} < 140 GeV$! The selections are not optimized $125 GeV < E_{\gamma\gamma} < 145 GeV$

Event selection $--qq\gamma\gamma$ channel cut flow

	qq sig	gnal	qq bacl	kground
generated	100000		2000000	
$qq\gamma\gamma$	99893	99.893%	13914611	69.573%
$E_{\gamma 1}$ >35GeV	99025	99.131%	120726	0.868%
35GeV< $E_{\gamma 2}$ <96GeV	97922	98.886%	55583	46.041%
<i>cosθ_{jj}>-</i> 0.95	93631	95.618%	44012	79.182%
$cos\theta_{\gamma\gamma}$ >-0.95	84930	90.707%	36794	83.600%
$pT_{\gamma 1}$ >20GeV	79339	93.417%	22481	61.100%
$pT_{\gamma 2}$ >30GeV	73929	93.181%	11733	52.191%
110GeV< $m_{\gamma\gamma}$ <140GeV	73927	99.997%	4316	36.785%
125GeV< $E_{\gamma\gamma}$ <145GeV	73571	99.518%	3912	90.639%
min <i>cosθ_{γj}</i> <0.9	53088	72.159%	1972	50.409%
		53.088%		0.010%
scaled to 5 ab-1	824.38		26674.65	

Fit model— $-qq\gamma\gamma$ channel

Fit variable: di-photon invariant mass

• Signal model

Double-side Crystal Ball PDF

$$CB(m_{\gamma\gamma}) = N \times \begin{cases} e^{-t^{2}/2} & \text{if } -\alpha_{low} \leqslant t \leqslant \alpha_{high} \\ \frac{e^{-12\alpha_{low}^{2}}}{\left[\frac{1}{R_{low}}(R_{low} - \alpha_{low} - t)\right]^{n_{low}}} & \text{if } t < -\alpha_{low} \\ \frac{e^{-2\alpha_{high}^{2}}}{\left[\frac{1}{R_{high}}(R_{high} - \alpha_{high} - t)\right]^{n_{high}}} & \text{if } t > \alpha_{high} \\ t = (m_{\gamma\gamma} - \mu_{CB})/\sigma_{CB} \end{cases} \quad \text{if } t > \alpha_{high} \\ \frac{e^{-2\alpha_{high}^{2}}}{\left[\frac{1}{R_{high}}(R_{high} - \alpha_{high} - t)\right]^{n_{high}}} & \text{if } t > \alpha_{high} \\ \frac{e^{-2\alpha_{high}^{2}}}{\left[\frac{1}{R_{high}}(R_{high} - \alpha_{high} - t)\right]^{n_{high}}} & \text{if } t > \alpha_{high} \\ \frac{e^{-2\alpha_{high}^{2}}}{\left[\frac{1}{R_{high}}(R_{high} - \alpha_{high} - t)\right]^{n_{high}}} & \text{if } t > \alpha_{high} \\ \frac{e^{-2\alpha_{high}^{2}}}{\left[\frac{1}{R_{high}}(R_{high} - \alpha_{high} - t)\right]^{n_{high}}} & \text{if } t > \alpha_{high} \\ \frac{e^{-2\alpha_{high}^{2}}}{\left[\frac{1}{R_{high}}(R_{high} - \alpha_{high} - t)\right]^{n_{high}}} & \text{if } t > \alpha_{high} \\ \frac{e^{-2\alpha_{high}^{2}}}{\left[\frac{1}{R_{high}}(R_{high} - \alpha_{high} - t)\right]^{n_{high}}} & \text{if } t > \alpha_{high} \\ \frac{e^{-2\alpha_{high}^{2}}}{\left[\frac{1}{R_{high}}(R_{high} - \alpha_{high} - t)\right]^{n_{high}}} & \text{if } t > \alpha_{high} \\ \frac{e^{-2\alpha_{high}^{2}}}{\left[\frac{1}{R_{high}}(R_{high} - \alpha_{high} - t)\right]^{n_{high}}} & \text{if } t > \alpha_{high} \\ \frac{e^{-2\alpha_{high}^{2}}}{\left[\frac{1}{R_{high}}(R_{high} - \alpha_{high} - t)\right]^{n_{high}}} & \text{if } t > \alpha_{high} \\ \frac{e^{-2\alpha_{high}^{2}}}{\left[\frac{1}{R_{high}}(R_{high} - \alpha_{high} - t)\right]^{n_{high}}} & \text{if } t > \alpha_{high} \\ \frac{e^{-2\alpha_{high}^{2}}}{\left[\frac{1}{R_{high}}(R_{high} - \alpha_{high} - t)\right]^{n_{high}}} & \text{if } t > \alpha_{high} \\ \frac{e^{-2\alpha_{high}^{2}}}{\left[\frac{1}{R_{high}}(R_{high} - \alpha_{high} - t)\right]^{n_{high}}} & \text{if } t > \alpha_{high} \\ \frac{e^{-2\alpha_{high}^{2}}}{\left[\frac{1}{R_{high}}(R_{high} - \alpha_{high} - t)\right]^{n_{high}}} & \text{if } t > \alpha_{high} \\ \frac{e^{-2\alpha_{high}^{2}}}{\left[\frac{1}{R_{high}}(R_{high} - \alpha_{high} - t)\right]^{n_{high}}} & \text{if } t > \alpha_{high} \\ \frac{e^{-2\alpha_{high}^{2}}}{\left[\frac{1}{R_{high}}(R_{high} - \alpha_{high} - t)\right]^{n_{high}}} & \frac{e^{-2\alpha_{high}^{2}}}{\left[\frac{1}{R_{high}}(R_{high} - \alpha_{high} - t)\right]^{n_{high}}} & \frac{e^{-2\alpha_{high}^{2}}}{\left[\frac{1}{R_{high}}(R_{high} - \alpha_{high} - t)\right]^{n_{high}}}} & \frac{e^{-2\alpha_{high}^{2}}}{\left[\frac{1}{R_{high}}(R_{high} - t)\right$$

 $Z \rightarrow q\overline{q}, H \rightarrow \gamma\gamma$, Signal Events

Fit model— $-qq\gamma\gamma$ channel

• Background Model

2nd polynomial exponential PDF

$$PDF(m_{\gamma\gamma}) = \exp[a \times \frac{(m_{\gamma\gamma} - 100)}{100} + b \times (\frac{m_{\gamma\gamma} - 100}{100})^{2}]$$

$$exp[a \times \frac{(m_{\gamma\gamma} - 100)}{100} + b \times (\frac{m_{\gamma\gamma} - 100}{100})^{2}]$$

 $Z \rightarrow q\overline{q}, H \rightarrow \gamma\gamma$, SM bkg Events

Results—
$$-qq\gamma\gamma$$
 channel

$$PDF_{sum} = \mu \times N_{sig}^{SM} \times PDF_{sig} + N_{bkg} \times PDF_{bkg}$$

$$\mu = 0.996^{+0.104}_{-0.103}$$

gfy@mail.ustc.edu.cn

Results——all channels

Repeat the former process in the other 2 sub-channels

gfy@mail.ustc.edu.cn

Comparison due to different magnetic fields $--\mu\mu\gamma\gamma$ channel

Magnetic field design: 3.5T(preCDR) -> 3.0T(present)

Effect: charged particle reconstruction and resolution

Comparison due to different magnetic fields

Measurement precision in 3.5T fast simulation by Feng Wang

Measurement precision in 3.0T fast simulation present

Channel	$\delta(Br imes \sigma)/(Br imes \sigma)$
$ZH ightarrow \mu\mu\gamma\gamma$	30.04%
$ZH o au au \gamma \gamma$	32.14%
$ZH ightarrow qq\gamma\gamma$	13.56%
$ZH \rightarrow \nu \nu \gamma \gamma$	14.26%
Total	9.0%

Channel	$\delta(Br imes \sigma)/(Br imes \sigma)$
$ZH ightarrow \mu\mu\gamma\gamma$	41.11%
$ZH o au au \gamma \gamma$	
$ZH o qq\gamma\gamma$	10.35%
$ZH ightarrow \nu \nu \gamma \gamma$	13.65%
Total	8.09%

! Not completely repeat

Further work

• Simulation method:

fast simulation

Include photon conversion, track reconstruction, etc. full simulation

Photon conversion:

High- energy photon converted to di-electron, which is not considered in fast simulation

➤ Lose 7.5% events

 \succ Broaden the $m_{\gamma\gamma}$ peak

Precision: 10.6% (fast sim.) vs. 12.8% (full sim.)

Further work

 $m_{\gamma\gamma}, m_{\gamma\gamma}^{recoil}, m_{\mu\mu}, m_{\mu\mu}^{recoil}$

• Measurement variable (fast sim. $\mu\mu\gamma\gamma$ channel for example)

gfy@mail.ustc.edu.cn

Conclusion

- The present $\delta(Br \times \sigma)/(Br \times \sigma)$ for $H \rightarrow \gamma\gamma$ reaches to 8.09% with the results combined with 3 sub-channels, and can be approved by optimizing the selection methods.
- The change of magnetic field has limited influences in the measurement precision.
- Next step: apply the full simulation into all sub-channels for a more credible simulation.

Thank you

Back up

 $ll\gamma\gamma$ channel cut flow

Select $\mu\mu\gamma\gamma$ final state from ll samples

	<i>μμ</i> s	ignal	au au si	gnal	$\mu\mu$ background		au au background	
generated	100000		100000		26930165		1000000	
μμγγ	138039	138.039%	3274	3.274%	1393678	5.175%	6204	0.062%
E_{γ} >35GeV	100602	72.879%	2980	91.020%	149107	10.699%	1045	16.844%
$ \cos\theta_{\gamma} < 0.9$	83759	83.258%	2470	82.886%	58507	39.238%	369	35.311%
10GeV< $pT_{\gamma 1}$ <70GeV	83740	99.977%	2470	100.000%	55978	95.677%	358	97.019%
$30 \text{GeV} < pT_{\gamma 2} < 100 \text{GeV}$	83509	99.724%	2466	99.838%	48173	86.057%	327	91.341%
110GeV< $m_{\gamma\gamma}$ <140GeV	81610	97.726%	2449	99.311%	16799	34.872%	126	38.532%
84GeV< $M_{\gamma\gamma}^{recoil}$ <103GeV	71416	87.509%	2180	89.016%	3174	18.894%	37	29.365%
125GeV< $E_{\gamma\gamma}$ <143GeV	71409	99.990%	2180	100.000%	3048	96.030%	35	94.595%
min $ cos\theta_{\gamma l} <0.9$	71248	99.775%	2172	99.633%	2704	88.714%	35	100.000%
		71.248%		2.172%		0.010%		0.0004%
scaled to 5 ab-1	55.43		1.66		2677.23		83.18	

$\nu\nu\gamma\gamma$ channel cut flow

	νν sig	gnal	u u bac	ground	
generated	100000		1000000		
ννγγ	109362	109.362%	339131	3.391%	
E_{γ} >30GeV	107475	98.275%	241700	71.270%	
$ \cos\theta_{\gamma} < 0.8$	71613	66.632%	31037	12.841%	
pT_{γ} >20GeV	69172	96.591%	10351	33.351%	
120GeV< $E_{\gamma\gamma}$ <150GeV	68731	99.362%	3783	36.547%	
110GeV< $m_{\gamma\gamma}$ <140GeV	68727	99.994%	1752	46.312%	
		68.727%		0.018%	
scaled to 5 ab-1	360.82		4436.2		

- Cut1: E_{γ} >35GeV
- Cut2: $|cos\theta_{\gamma}| < 0.84$
- Cut3: $M_{\gamma\gamma}^{recoil} < 110 \text{GeV}$
- Cut4: $pT_{\gamma 1}$ >37GeV & $pT_{\gamma 2}$ >48GeV

Channel	Generate	$\operatorname{cut1}$	$\operatorname{cut2}$	cut3	cut4
nnH_aa	Efficiency	100%	82.94%	61.22%	57.45%
nnH_aa	557	557	462	341	320
nnaa	1276400	401626	105008	16182	13231

Results from Feng Wang ––qqyy channel

- Cut1: E_{γ} >35GeV
- Cut2: $|cos\theta_{\gamma}| < 0.9$
- Cut3: 20GeV< $pT_{\gamma 1}$ <97GeV & 26GeV< $pT_{\gamma 2}$ <100GeV
- Cut4: 85GeV< $M_{\gamma\gamma}^{recoil}$ <100GeV
- Cut5: *pT*_{γγ}>118GeV
- Cut6: 130GeV<*E*_{γγ}<150GeV

Channel	Generate	$\operatorname{cut1}$	$\operatorname{cut2}$	${ m cut3}$	cut4	${ m cut5}$	cut6
qqH_aa	Efficiency	100%	89.41%	75.81%	54.38%	34.78%	34.78%
qqH_{aa}	1633	1633	1460	1238	888	568	568
qqaa	11011914	2027271	803856	228018	93878	24390	19184
ww	42455430	46318	20339	6616	17	0	0
$\mathbf{Z}\mathbf{Z}$	5805561	15716	2913	990	51	17	11
wworzz	19700221	18953	8723	3630	14	14	14

Results from Feng Wang --- *llyy* channel

- Cut1: E_{γ} >35GeV
- Cut2: $|\cos\theta_{\gamma}| < 0.9$
- Cut3: 20GeV< $pT_{\gamma 1}$ <93GeV & 30GeV< $pT_{\gamma 2}$ <100GeV ($\mu\mu$ channel) 30GeV< $pT_{\gamma 1}$ <93GeV & 36GeV< $pT_{\gamma 2}$ <100GeV ($\tau\tau$ channel)
- Cut4: 86GeV< $M_{\gamma\gamma}^{recoil}$ <100GeV
- Cut5: 136GeV< $E_{\gamma\gamma}$ <148GeV ($\mu\mu$ channel) 130GeV< $E_{\gamma\gamma}$ <148GeV ($\mu\mu$ channel)
- Cut6: min $|cos\theta_{\gamma j}|<0.9$

Channel	Generate	$\operatorname{cut1}$	$\operatorname{cut2}$	${ m cut3}$	$\operatorname{cut4}$	${ m cut5}$	${ m cut6}$
$\mu^+\mu^-Haa$	Efficiency	100%	91.56%	72.28%	55.42%	54.21%	42.17%
$\mu^+\mu^-Haa$	83	83	76	60	46	45	35
$\mu^+\mu^-aa$	1135659	214725	66703	23786	6427	1887	1026
$\tau^+\tau^-H_aa$	Efficiency	98.67%	89.33%	61.33%	48.00~%	46.67%	41.89%
$\tau^+\tau^-Haa$	75	74	67	46	36	35	31
$\tau^+\tau^-aa$	429975	146922	49424	14533	3562	1778	1410

Results from Yitian $-qq\gamma\gamma$ channel fast sim. VS. full sim.

	After:	UnCut	Cut1	Cut2	Cut3	Cut4
	Run:	39997	39183	29304	25274	22378
Signal	Weighted:	1632	1599	1196	1031	914
914	Efficiency:	100%	97.96%	73.27%	63.19%	55.95%
	Run:	11300000	99092	91418	51406	33601
Bkg	Weighted:	11011914	96565	89087	50095	32744
32744	Efficiency:	100%	0.88%	0.81%	0.45%	0.30%
	After	UnCut	Cut1	Cut2	Cut3	Cut/
	Event:	37154	36540	27597	23821	20296
Sig	Weighted:	1516	1491	1126	972	828
828	Efficiency:	100%	98.35%	74.28%	64.11%	54.63%
	Event:	11300000	92362	85041	51049	29900
Bkg	Weighted:	11011914	90007	82872	49747	29137
29137	Efficiency:	100%	0.82%	0.75%	0.45%	0.26%
Sig: Bkg:	Fast:914 * 92 Fast:32744 * 9	.5% = 845, 92.5% = 3028	8(could be c	lifferent)	Full: 828 Full: 29137	

Cut1: E_{γ} >35GeV, $|\cos\theta_{\gamma}| < 0.99$

Cut2:
$$(\cos\theta_{\gamma 1} + 1) (\cos\theta_{\gamma 2} - 1) < -0.07$$

 $(\cos\theta_{\gamma 1} - 1) (\cos\theta_{\gamma 2} + 1) < -0.07$
 $|\cos\theta_{\gamma 1} + \cos\theta_{\gamma 2}| < 0.9$

Cut3:
$$\cos(p_{\gamma 1}, p_{recoil})$$
> -0.95
 $\cos(p_{\gamma 2}, p_{recoil})$ < 0.70

Cut4:
$$E_{\gamma\gamma} < 0.48M_{\gamma\gamma} + 41GeV$$

 $E_{\gamma\gamma} > 0.74M_{\gamma\gamma} + 41GeV$

Fast

Full