

$Higgs \rightarrow \tau \tau$ Analysis at CEPC

Dan YU

May 25, 2018

IHEP

- 1. Tau Finding
- 1.1 IIH channel
- 1.2 qqH channel
- 1.3 Combination
- 2. CEPC_V4 APODIS
- 2.1 IIH channel
- 2.2 qqH channel

Motivation

- Tau is the heaviest SM lepton large coupling to Higgs boson $Br(H \rightarrow \tau \tau)$: 6.27%
- accuracy(BR($H
 ightarrow au au)) \sim 1\%$
- rich relevant physics
- Performance rely on particle separation
- Objectives for detector optimization
- Testbed for PFA
- Clean: no neutrons in final states; > 90% decaying to 1 or 3 tracks and photon pairs

Tau Finding

Tau topology

- *IIH* channel:
- Signal (5ab⁻¹): μμH(2247)/ννH(15504)/(eeH2404)
- Irreducible background:
 - $ZZ \rightarrow \mu\mu\tau\tau/\nu\nu\tau\tau$
 - for $\nu\nu\mu$ H: WW $\rightarrow \nu\tau\nu\tau$

- qqH channel:
- Signal:
 - $(5ab^{-1}): qqH(45597)$
- Irreducible background: $ZZ \rightarrow qq\tau\tau \sim 500 \mathrm{k}$

$\mu\mu H$ channel-Tactics

- Pre-selection for $\mu\mu H$
 - $\mu\mu$ information
 - Rejection: background without $Z \rightarrow \mu\mu$
- τ finding
 - Multiplicity
 - Rejection: jets
- Impact parameter fitting
 - Vertex information
 - Rejection: $H \rightarrow WW^*$

$\mu\mu$ *H*-**Pre-selection**

- $\textit{N}_{\mu^+} > 1, \textit{N}_{\mu^-} > 1;$ remove no muon backgrounds
- 110GeV < M_{recoil} < 180GeV; keep Higgs signal
- 40*GeV < M_{invariant} <* 180*GeV*; keep Z signal
- Main background after preselection: $2f(\mu\mu), ZZ$

	$\mu\mu H\tau\tau$	$\mu\mu H$ inclusive bkg	ZZ	WW	singleW	single Z	2f
total generated	2292	33557	5711445	44180832	15361538	7809747	418595861
after preselection	2246	32894	122674	223691	0	86568	1075886

$\mu\mu$ *H*- τ Finding

- Muon veto (Inv M $\sim M_Z$)
- Find leading track
- Collect particles nearby and in the opposite direction (energy>0.5GeV)
- Count number of tracks and photons: Ntrk(A/B), Nphoton(A/B)
- Get track-track angles (Cone_TT), track-photon angles (Cone_TP), photon-photon angles (Cone_PP)
- Training of these variables in TMVA

$\mu\mu$ *H*- τ Finding

$\mu\mu$ *H*- τ Finding

- TMVA Training: BDTG
- TMVA cut: BDTG> 0.78
- Signal efficiency: 93.15%
- $\sqrt{S+B}/S \sim 2.9\%$
- Remaining backgrounds:
 - ZH: $H \rightarrow WW$ with W leptonic decay
 - SM: WW/ZZ leptonic decay

	$\mu\mu H\tau\tau$	$\mu\mu H$ inclusive bkg	ZZ	WW	single <i>W</i>	single Z	2 <i>f</i>
after preselection	2246	32894	122674	223691	0	86568	1075886
N _{trk/ph}	2219	1039	2559	352	0	9397	25583
BDT>0.78	2135	885	484	24	0	157	161
efficiency	93.15%	2.63%	< 0.01%	< 0.01%	< 0.01%	< 0.01%	< 0.01%

$\mu\mu$ *H*-Impact parameter Fitting

- idea: starting points for tracks decayed from *τ*s > others
- Pull: $D0^2 + Z0^2$
- $\bullet\,$ Fit result: signal $\sim2137\pm48$
- Accuracy: 2.26±0.05%
- Depends on vertex resolution
- Simple extrapolating to eeH: preselection for background 4 times larger than in μμH accuracy 2.72%

$\nu\nu H$

- Similar procedure as $\mu\mu H$, without vetoing charged track
- Signal efficiency after pre-selection: 60.8% (not optimized)
- Signal efficiency after τ finder: 57.02%
- Huge irreducible background: tough to fit...
- Accuracy: 4.29%

	$\nu\nu \mathrm{H} au au$	$\nu\nu$ H inclusive bkg	ZZ	WW	singleW	single Z	2 <i>f</i>
total generated	15497	231670	5711445	44180832	17361538	7809747	418595861
after preselection	9434	214830	1239457	7463105	3327803	956694	12826280
$N_{Trk}(A/B) < 6$ & $N_{Ph}(A/B) < 7$	9260	8858	24760	1354852	17389	676185	1535029
BDT > 0.78	8836	6587	15450	89729	1355	10739	11243
efficiency	57.02%	2.84%	0.27%	0.20%	< 0.01%	0.14%	$<\!0.01\%$

qqH Tactics

- Pre-selection
 - Missing mass, transverse momentum, multiplicity
 - Reject: leptonic; high energy neutrinos / without neutrinos
- τ candidate finding
 - Multiplicity and isolation
 - Reject: Jets
- Event finding
 - $\tau \tau$ information
 - Reject: 2f; fake τ candidate
 - qq information
 - Reject: ZH conjugation; ZZ
- Impact parameter fitting
 - Vertex information
 - Reject: $H \rightarrow WW^*$

qqH- τ finding

- Tracks energy (> 1.5 GeV)
- Ntracks< 7, Nphotons< 10 in cone_s(0.15)
- Isolated: energy ratio of cone_s to cone_l(0.45) > 0.92
- visible mass (< 2.0 GeV)
- existing opposite charged $\tau {\bf s}$
- optimized to efficiency×purity (58%) efficiency: $N(\tau^+\tau^-)/N(qqH\tau\tau)$ purity:
 - $1 N(\tau^+\tau^-)/N(qqH$ inclusive)

qqH-Event finding

- Steps:
 - leading opposite charged $\tau {\rm s}$ defined to be $\tau \tau$ system
 - remaining particles defined to be qq system
- Variables:
 - visible $\tau \tau$ invariant mass
 - qq invariant mass
 - qq recoil mass
- $\sqrt{S+B}/S \sim 1.14\%$

- (20GeV, 120GeV)
- Main background reduced:
 - 2f
 - fake tau candidate
- Main background remaining:
 - ZH
 - ZZ
 - WW

qq invariant mass

- Peak @ M_Z
- Main background reduced:
 - ZH with Z to tau
 - WW semi-leptonic
- Main background remaining:
 - ZZ

 M_Z : signal, ZZ M_H : ZH conjugation

- Peak @ M_H
- Main background reduced:
 - $ZZ \rightarrow qq\tau\tau$
- Main background remaining:
 - irreducible backgrounds

M_Z: ZZ M_H: signal

- Fit result: signal 22153 \pm 206
- Accuracy: 0.93±0.01%

Combined result for CEPC (5 ab^{-1})

	$\delta (\sigma \times BR) / (\sigma \times BR)$
$\mu\mu$ H	2.26±0.05%
eeH(extrapolated)	$2.72{\pm}0.05\%$
u uH	4.29±0.02%
qqН	$0.93{\pm}0.01\%$
combined	$0.81{\pm}0.01\%$

CEPC_V4 - APODIS

	CEPC_v1 (~ ILD)	APODIS (Optimized)	Comments	10 ⁷
Track Radius	1.8 m	>= 1.8 m	Requested by Br(H->di muon) measurement	<u>د</u> ا
B Field	3.5 T	3 T	Requested by MDI	1
ToF	-	50 ps	Requested by pi-Kaon separation at Z pole	10 ² /µ ⁺ µ ⁻ Z
ECAL Thickness	84 mm	84(90) mm	84 mm is optimized on Br(H->di photon) at 250 GeV; 90mm for bhabha event at 350 GeV	it Single Z 277. Single Z 277.
ECAL Cell Size	5 mm	10 mm	Passive cooling request ~ 20 mm. 10 mm should be highly appreciated for EW measurements – need further evaluation	10 ² Simple W ZH ti 10 ² Simple W W fusion
ECAL NLayer	30	30	Depends on the Silicon Sensor thickness	104
HCAL Thickness	1.3 m	1 m	-	Z fusion 5×10
HCAL NLayer	48	40	Optimized on Higgs event at 250 GeV; Margin might be reserved for 350 GeV.	0 100 130 200 200 300 460

$3T + 240GeV - \mu\mu H$

- Cut efficiency: 95.81%
- Fit result: signal $\sim 2037 \pm 45$
- mumuH Accuracy: 2.21±0.05%

- Cut efficiency: 47.80%
- Fit result: signal $\sim 19343 \pm 187$
- mumuH Accuracy: 0.97±0.01%

Summary

- High efficiency and purity identification of $\boldsymbol{\tau}$ candidates
- PFA oriented design provide excellent access to $g(H\tau\tau)$ measurement
 - τ information
 - Jet information
 - Vertex information

	$\mu\mu H$	qqH	combination
CEPC_v1	$2.26{\pm}0.05$	$0.93{\pm}0.01$	$0.81{\pm}0.01$
APODIS	$2.21{\pm}0.05$	$0.97{\pm}0.01$	$0.87{\pm}0.01$

• No obvious degrading in CEPC_V4 at \sqrt{S} =240GeV (less than 8%)

Thank you!

Backup