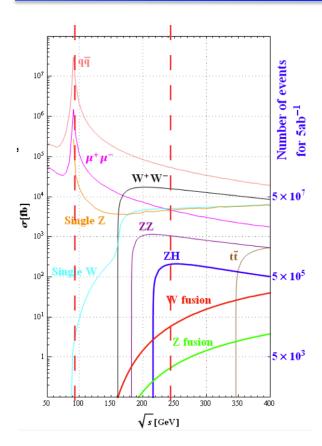
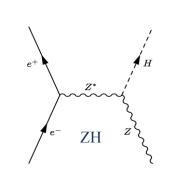


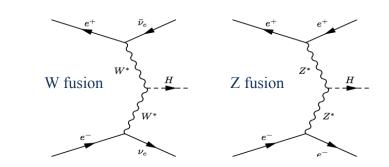
H→WW Branching Ratio Measurement

Tong LI Shandong University

Workshop on the Circular Electron Positron Collider 24-26 May 2018, Rome


Contents


Introduction


- MC samples
- Analysis with CEPC_v1 data
 - Pre-selections Event selections Results
- Analysis with CEPC_v4 data
 - Comparisons with CEPC_v1 results

Introduction

ZH process is the most dominant Higgs production channel at the CEPC.

As is predicted in the Standard Model theory, the branching ratio of $H \rightarrow WW$ is around 22%.

Higgs productions at CEPC.

- H->WW is an important channel to study Higgs couplings with vector bosons.
- Measurement of Br(H->WW) is crucial for the determination of Higgs width.
- Various final states of W boson decay (leptons, missing E_T, jets...) can provide a great benchmark to evaluate detector performance for CEPC.

MC samples

Process	Cross Section in fb	Number of Events in 5000fb ⁻¹
	Higgs prod	uction
ZH	212	1.06×10^{6}
$\nu \bar{\nu} H$	6.27	3.36×10^{4}
e^+e^-H	0.63	3.15×10^{3}
total	219	1.10×10^{6}

Standard Model Background					
qq	50216	2.5×10^{8}			
$\mu\mu$	4405	2.2×10^{7}			
WW	15484	7.7×10^{7}			
ZZ	1033	5.2×10^{6}			
eeZ(single Z)	4734	2.4×10^{7}			
evW(single W)	5144	2.6×10^{7}			
total	801016	3.54×10^{8}			

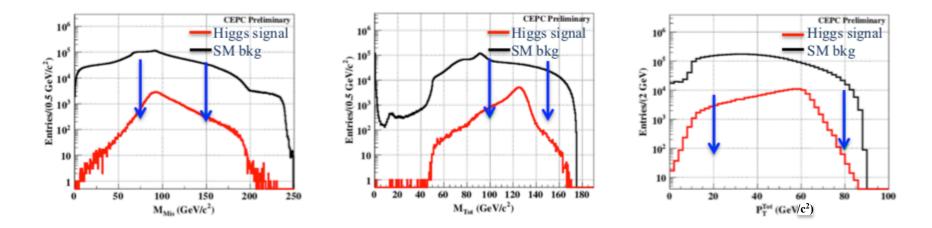
Z boson decay W boson decay	ee	μμ	ττ	νν	99
$WW^* \rightarrow evev$	95	88	88	603	1836
$WW^* \rightarrow \mu \nu \mu \nu$	93	87	87	593	1808
$WW^* \to e \nu \mu \nu$	188	175	175	1206	3644
$WW^* \to e \nu \tau \nu$	201	187	188	1281	3901
$WW^* \rightarrow \mu \nu \tau \nu$	200	186	186	1271	3872
$WW^* \to \tau \nu \tau \nu$	107	99	99	681	2072
$WW^* \rightarrow e\nu qq$	1196	1112	1114	7589	23112
$WW^* \rightarrow \mu \nu q q$	1187	1104	1105	7530	22939
$WW^* \to \tau \nu qq$	1271	1182	1183	8066	24558
$WW^* \rightarrow qqqq$	3764	3502	3506	23884	72735

Cross sections and number of events of signal and main SM background processes.

Signal events of $H \rightarrow WW$ processes.

MC samples

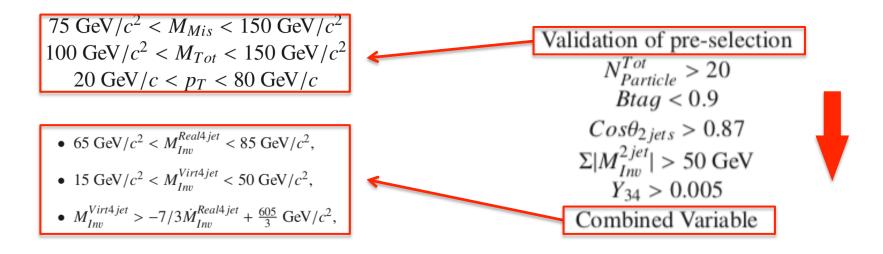
• Two sets of $Z \rightarrow vv$, $H \rightarrow$ inclusive samples for signal process:


CEPC_v1 (vs = 250GeV, B field = 3.5Tesla...)

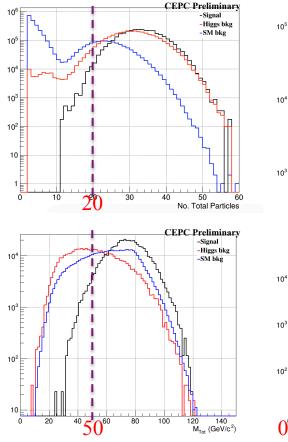
CEPC_v4 (vs = 240GeV, B field = 3.0Tesla...)

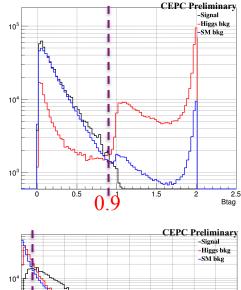
- Integrated luminosity is 5 ab⁻¹, background events are generated by Whizard1.95 including ISR, detector model is simulated by Geant4.
- Object reconstruction is done using the particle flow algorithm, Arbor. Charged particles identification is performed by LICH, ee-k_T algorithm is used for jet clustering, performance of b-tagging is given by LCFIPlus.

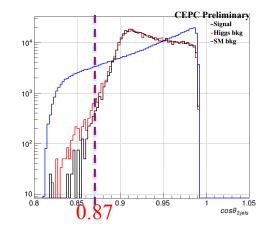
Analysis with CEPC_v1 data


• The missing mass, total mass and total p_T are used as the pre-selections.

 $75 \text{ GeV}/c^{2} < M_{Mis} < 150 \text{ GeV}/c^{2}$ $100 \text{ GeV}/c^{2} < M_{Tot} < 150 \text{ GeV}/c^{2}$ $20 \text{ GeV}/c < p_{T} < 80 \text{ GeV}/c$


Pre-selections criteria.


Event selections



- Selections of jet is done by 2 steps:
- Assuming that there are only 2 jets in each event, all particles are forced into 2 jets.
- 4 jets hypothesis are made, to form all possible jet-pairs and the invariant mass are calculated. The jet-pair with invariant mass closest to W mass is taken as the on-shell W decay and the remaining 2 jets are assigned to the off-shell W decay.

Distributions of discriminant variables

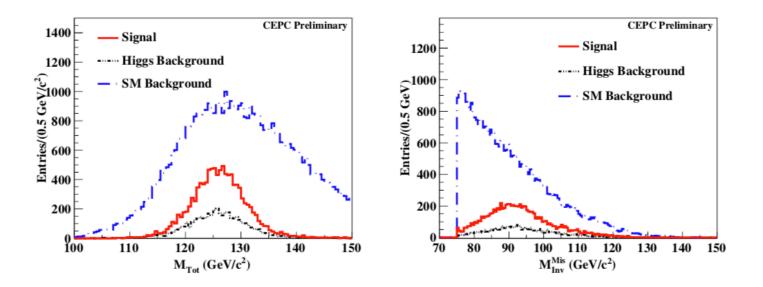
- No. of total particles.
- Sum of b-tagging of 2 jets.
- Cos angle of 2 jets.
- Total mass of 2 jets.
- Distance between jet3 and jet4.

0.09 0.1

Y34

0.08

0.01-0.02 0.03 0.04 0.05 0.06 0.07


Cut flow tables

N A	No. of signal	Relative efficiency	No. of Higgs bkg	Relative efficiency	No. of SM bkg	Relative effciency
My results:	24889		222278		22687012	
	20454	82.18%	144169	64.86%	3528746	15.55%
	19729	96.46%	124341	86.25%	537839	15.24%
	19390	98.28%	28954	23. 29%	477099	88.71%
	19336	99.72%	28761	99. 33%	433563	90.87%
	18657	96.49%	14840	51.60%	309919	71.48%
	15211	81.53%	6927	46.68%	122866	39.64%
	9037	59.41%	3071	44. 33%	38226	31.11%
	Total efficiency	36.31%		1.38%		0.17%

Results from	No. of signal	Relative efficiency	No. of Higgs bkg	Relative efficiency	No. of SM bkg	Relative effciency
Note:	23938		208200		21314314	
NOLE.	20405	85.24%	143765	69.05%	3166923	14.86%
	19681	96.45%	124112	86.33%	537839	16.98%
	19349	98. 31%	28857	23. 25%	477099	88.71%
	19289	99.69%	28673	99.36%	433563	90.87%
	18621	96. 54%	14793	51.59%	309919	71.48%
	15183	81.54%	6919	46.77%	122866	39.64%
	9022	59.42%	3075	44.44%	38226	31.11%
	Total efficiency	37.68%		1.47%		0.17%

- Relative efficiency = Number of events after this cut / Number of events before this cut
- These results are consistent when considering the statistical uncertainty.

Results

Visible mass and missing mass after selections.

➢ N_{Signal} = 9037 ± 225

- Signal efficiency = 36.31%, ZH background efficiency = 1.38%
- Accuracy = $\sqrt{(S+B)/S}$ = 2.49%

Branching ratio measurement

The formula for branching ratio measurement:

$$Br(H \to WW^*) = \frac{N_{sig}}{N_{total} \cdot \varepsilon \cdot Br_{rel.}}$$

Br_{rel.} represents the branching fraction given by PDG:

	Total events N	$Br(W \to \ell \nu)$	$Br(W \rightarrow qq)$	$Br(Z \to \ell^+ \ell^-)$	$Br(Z \to qq)$
Mean value	1060000	10.86%	67.41%	3.3658%	69.91%
Uncertainty	± 4000	±0.09%	±0.27%	$\pm 0.0023\%$	±0.06%

According to the results of 13 sub-channels, the mean value of branching ratio is:

 $Br(H \to WW^*) = (\Sigma Br_i)/N_i$

The Br_i is the result of each sub-channel. Br($H \rightarrow WW$) is 21.6%.

Precision for the measurement

The final result of precision is obtained by:

$$\Delta Br(H \to WW^*)/Br(H \to WW^*) = \sqrt{\left(\frac{\Delta N_{obs.}}{N_{obs.}}\right)^2 + \left(\frac{\Delta N_{total}}{N_{total}}\right)^2 + \left(\frac{\Delta Br_{rel.}}{Br_{rel.}}\right)^2}$$

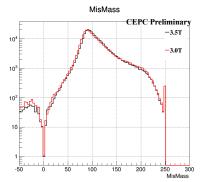
Precision of N_{total} and $Br_{rel.}$ are negligible. The equation would be:

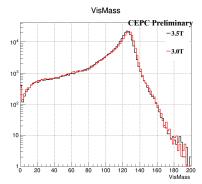
$$\Delta Br(H \to WW^*)/Br(H \to WW^*) \sim \sqrt{(\frac{\Delta N_{obs.}}{N_{obs.}})^2}$$

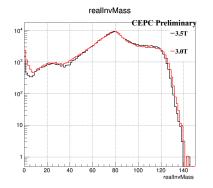
Define a variable Υ_i as the precision of each sub-channel, Υ_{ij} as the combined precision of two sub-channels:

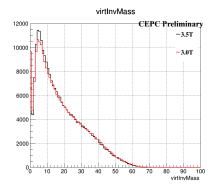
$$\Gamma_{ij}^2 = \frac{\Gamma_i^2 \Gamma_j^2}{\Gamma_i^2 + \Gamma_j^2}$$

The overall combination results of statistical uncertainty for $Br(H \rightarrow WW)$ is 1.29%.

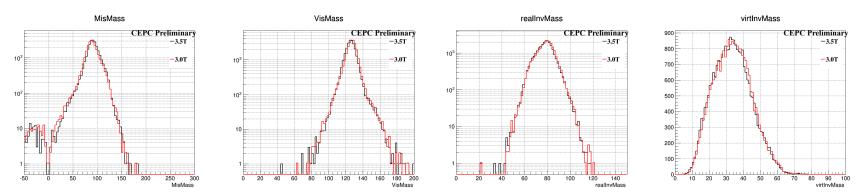

Summary of the results

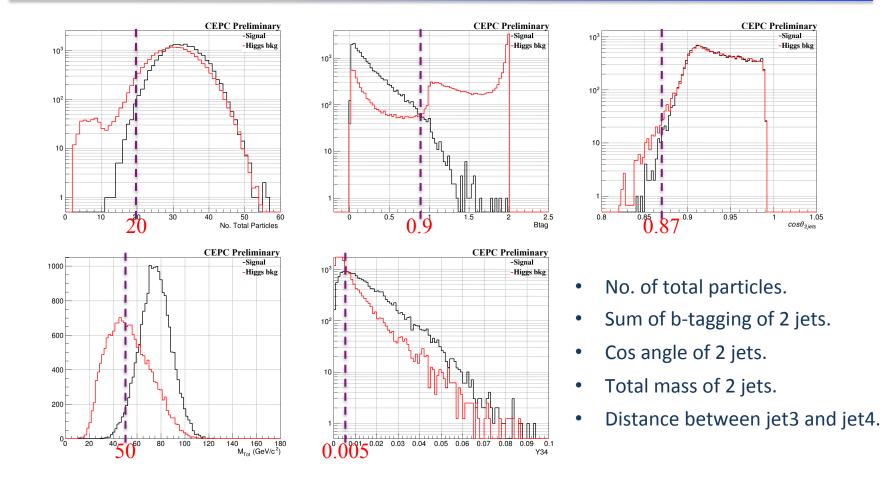

Category	Signal	Relative uncertainty	Efficiency of selection
$Z \rightarrow e^+e^-; H \rightarrow WW^* \rightarrow evev$	20±7	35.0%	21.1%
$Z \rightarrow e^+e^-; H \rightarrow WW^* \rightarrow \mu\nu\mu\nu$	44±8	18.2%	47.3%
$Z \rightarrow e^+e^-; H \rightarrow WW^* \rightarrow ev\mu v$	53±8	15.1%	28.2%
$Z \rightarrow e^+e^-; H \rightarrow WW^* \rightarrow evqq$	435±23	5.3%	36.4%
$Z \rightarrow e^+e^-; H \rightarrow WW^* \rightarrow \mu\nu qq$	551±24	4.5%	46.4%
$Z \rightarrow \mu^+ \mu^-; H \rightarrow WW^* \rightarrow evev$	23±5	21.7%	26.1%
$Z \to \mu^+ \mu^-; H \to WW^* \to \mu \nu \mu \nu$	39±7	17.9%	44.8%
$Z \rightarrow \mu^+ \mu^-; H \rightarrow WW^* \rightarrow e \nu \mu \nu$	93±10	10.7%	53.1%
$Z \to \mu^+ \mu^-; H \to WW^* \to evqq$	573±25	4.0%	51.5%
$Z \rightarrow \mu^+ \mu^-; H \rightarrow WW^* \rightarrow \mu \nu q q$	756±30	4.4%	68.4%
$Z \rightarrow \mu^+ \mu^-; H \rightarrow WW^* \rightarrow qqqq$	±	2.9%	
$Z \rightarrow v \bar{v}; H \rightarrow W W^* \rightarrow e v q q$	680±32	4.7%	9.0%
$Z \rightarrow v\bar{v}; H \rightarrow WW^* \rightarrow \mu v q q$	790±43	4.2%	10.5%
$Z \to \nu \bar{\nu}; H \to W W^* \to q q q q$	9022±224	2.5%	37.8%


Summary of the $H \rightarrow WW$ branching ratio measurements with CEPC_v1.


Analysis with CEPC_v4 data

$Z \rightarrow vv$, $H \rightarrow$ inclusive:





$Z \rightarrow vv$, selected by $H \rightarrow WW \rightarrow qqqqq$:

Missing-mass, visible-mass, invariant mass of 2 jets from real/virtual W decay.

Distributions of discriminant variables in CEPC_v4

-Signal

-Higgs bkg

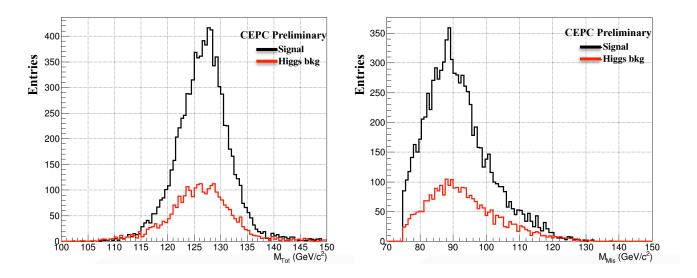
1.05

cose_{2iets}

Comparison of cut flow tables

CEPC_v1:

]	No. of signal	Relative efficiency	No. of Higgs bkg	Relative efficiency	No. of SM bkg	Relative effciency
	24889		222278		22687012	
	20454	82.18%	144169	64.86%	3528746	15.55%
	19729	96. 46%	124341	86.25%	537839	15.24%
	19390	98.28%	28954	23. 29%	477099	88.71%
	19336	99.72%	28761	99. 33%	433563	90. 87%
	18657	96. 49%	14840	51.60%	309919	71.48%
	15211	81.53%	6927	46.68%	122866	39.64%
	9037	59.41%	3071	44. 33%	38226	31.11%
]	Total efficiency	36.31%		1.38%		0.17%

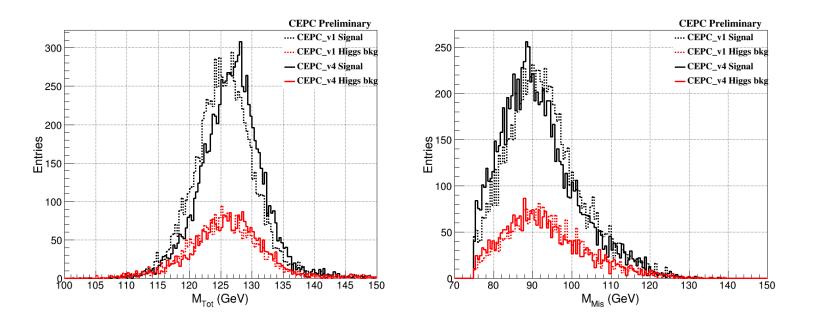

CEPC_v4:

No. of signal	Relative efficiency	No. of Higgs bkg	Relative efficiency
23675		211307	
18894	79.81%	134785	63. 79%
18404	97.41%	118963	88.26%
18048	98.07%	26928	22.64%
18006	99. 77%	26710	99. 19%
17451	96. 92%	14247	53. 34%
14273	81.79%	6480	45. 48%
8516	59.67%	2868	44.26%
Total efficiency	35.97%		1.35%

No obvious discrepancies showed in the cut flow tables.

2018/5/25

Results



Visible mass and missing mass after selections.

➢ N_{Signal} = 8516 ± 92

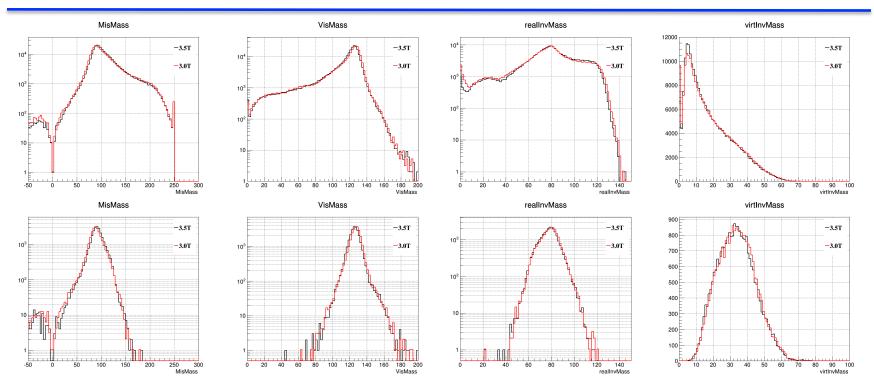
- Signal efficiency = 35.97%, ZH background efficiency = 1.35%
- Accuracy = $\sqrt{(S+B)/S}$ = 1.25%

Comparison of variables distributions

Distributions of visible mass and missing mass after selections.

Dash line: CEPC_v1, solid line: CEPC_v4.

Black line: signal, red line: Higgs background.


Summary

- No obvious discrepancies showed with two sets of samples according to the variables distributions.
- No distinct change of performance for ZH->vvqqqq channel when we turn to CEPC_v4 detector model from CEPC_v1.
- For the H→WW branching ratio measurement, the other channels need to be done based on CEPC_v4 samples.

backup

Comparisons between 2 samples

Missing-mass, visible-mass, invariant mass of 2 jets from real/virtual W decay. Top: Z->vv, H->inclusive. Bottom: Z->vv, selected by H->WW->qqqq. Black line: CEPC_v1, 3.5T. Red line: CEPC_v4, 3.0T.

Cut flow table

N A	No. of signal	Relative efficiency	No. of Higgs bkg	Relative efficiency	No. of SM bkg	Relative effciency
My results:	24889		222278		22687012	
	20454	82.18%	144169	64.86%	3528746	15.55%
	19729	96.46%	124341	86.25%	537839	15.24%
	19390	98.28%	28954	23. 29%	477099	88.71%
	19336	99.72%	28761	99. 33%	433563	90. 87%
	18657	96.49%	14840	51.60%	309919	71.48%
	15211	81.53%	6927	46.68%	122866	39.64%
	9037	59.41%	3071	44. 33%	38226	31.11%
	Total efficiency	36. 31%		1.38%		0.17%
Results from		Relative efficiency		Relative efficiency		Relative effciency
	23938		208200		21314314	
Note:	20405	85.24%	143765	69.05%	3166923	14.86%
	19681	96.45%	124112	86.33%	537839	16.98%
	19349	98.31%	28857	23. 25%	477099	88.71%
	19289	99.69%	28673	99.36%	433563	90.87%
	18621	96. 54%	14793	51.59%	309919	71.48%
	15183	81.54%	6919	46.77%	122866	39.64%
	9022	59.42%	3075	44. 44%	38226	31.11%
	Total efficiency	37.68%		1.47%		0.17%

Relative efficiency = Number of events after this cut/Number of events before this cut These results are consistent.