

CEPC Workshop Higgs Hadronic Decay Branch Ratio Measurement in CEPC

Yu Bai (from Southeast University, Nanjing)

On Behalf of CEPC Physics-Software

Study Group

May 14, 2018

Introduction

Current Result in H->bb

$H \rightarrow b \overline{b}$	Tevatron	ATLAS Run 1	CMS Run 1	ATLAS Run 2	CMS Run 2
VH	1.6 ± 0.7	$0.52 \pm 0.32 \pm 0.24$	1.0 ± 0.5	$1.20 \pm 0.24 \pm 0.28$	1.2 ± 0.4
VBF	_	-0.8 ± 2.3	$2.8\pm1.4\pm0.8$	-3.9 ± 2.8	-3.7 ± 2.7
ttΠ	_	$1.4\pm0.6\pm0.8$	0.7 ± 1.9	$2.1\pm0.5\pm0.9$	$1.19\pm0.5\pm0.7$
Inclusive			_		2.3 ± 1.7
PDG Comb.	1.6 ± 0.7	0.6 ± 0.4	1.1 ± 0.5	1.2 ± 0.3	1.2 ± 0.4

An improvement of more than 1 order of magnitude in precision at CEPC

Higgs hadronic decay: Benchmark channel to understand the performance in tracking, vertex finding, jet clustering and flavor tagging

Review of the Analysis

- 2016-2017: H->bb/cc/gg Analysis in qqH/vvH/eeH/μμH
 - Demonstrate the capability of flavor tagging and jet clustering in achieving the precision
 - Flavor tagging are implemented with template fit method
 - Higgs white paper include these results
- From summer in 2017, IIH channel redone with new method:
 - 2-D template fit replaced by a 3-D fit
 - Systematic uncertainty considered
 - Summarize in note, paper draft reviewed
- Latest update:
 - Redo analysis with 3T samples
 - New techniques to improve the performance of analysis

Event Selection in IIH/vvH/qqH

Signal:	Backgrounds:	Preselection:	Flavor Tagging	
ZH->II+ii	ZZ semi-leptonic(<i>µµ</i> jj) Single Z-leptonic(eejj)	Lepton Pair Invariant mass Lepton Recoil mass Jets Invariant mass Higgs Polar angle		
ZH->vv+jj	ZZ semi-leptonic (one Z invisible decay) Single Z semi-leptonic WW/SW semi-leptonic	Missing Energy,p⊤ Jets invariant/recoil mass Jet Multiplicity(yth-value) Angle between jets MVA applied	Template Fit	
ZH->multi-jets	quark pair production ZZ/WW hadronic	Total Energy Jet Multiplicity Jet Paring(jet invariant mass and angular distribution) MVA applied		

Results of IIH/vvH/qqH

Performance of multi-variable based flavor tagging :

Template Fit:

Table 6. Expected relative precision on $\sigma(ZH) \times BR$ for the $H \to b\bar{b}$, $c\bar{c}$ and gg decays from a CEPC dataset of 5 ab⁻¹.

Z decay mode	$H \rightarrow b\bar{b}$	$H \rightarrow c \bar{c}$	H ightarrow gg	Comments
$Z ightarrow e^+e^-$	1.3%	14.1%	7.9%	CEPC study
$Z ightarrow \mu^+ \mu^-$	1.0%	10.5%	5.4%	CEPC study
Z ightarrow q ar q	0.4%	8.1%	5.4%	CEPC study
$Z \to \nu \bar{\nu}$	0.4%	3.8%	1.6%	CEPC study
Combined	0.3%	3.2%	1.5%	

Results in preCDR:

Decay mode	$\sigma(ZH) \times BR$	BR
$H \rightarrow b \bar{b}$	0.28%	0.57%
$H \rightarrow c \bar{c}$	2.2%	2.3%
H ightarrow gg	1.6%	1.7%

- Consistent with pre-CDR result
- Demonstrate the capability to achieve expected performance

IIH Analysis

- Dominant background in IIH analysis:
 - $\mu\mu$ H channel: ZZ*/Z γ *-> $\mu\mu$ qq
 - eeH channel: ee+qq
- Analysis independent of MC prediction of dominant backgrounds:
 - These background have different lepton pair recoil mass spectrum
 - Extract the background yield by including recoil mass spectrum in the fit

3D Fit

• Recoil mass of signal: Crystal ball + double side exponential

- Recoil mass of background: 1 order Chebychev polynomial
- Background and signal model describe the simulated data well

Statistic Uncertainties

- ToyMC generate data fluctuate according to statistic uncertainty
- Roughly get the same statistic uncertainty as before

Systematic Uncertainty

- Flavor tagging systematic uncertainty directly caused by the bias in templates
- Flavor tagging systematic uncertainty are estimated in the scenario calibration with $\mu\mu$ qq
- The precision of calibration are limited by μμqq statistic uncertainty and the knowledge of its flavor components
- Typical bias are considered in each template

Systematic uncertainty in IIH channel

	$\mu^+\mu^-H$		e^+e^-H			
	1.11%	10.5%	5.44%	1.59%	14.4%	8.3%
	$H \to b \bar{b}$	$H\to c\bar{c}$	$H \to gg$	$H \to b \bar{b}$	$H \to e \bar{c}$	$H \to gg$
Fired Background	-0.17%	$\pm 4.1\%$	7.6%	-0.17%	$\pm 4.1\%$	7.6%
Fixed Dataground	+0.06%	-4.2%		+0.06%	-4.2%	
Report Solution	+0.68%	$\pm 0.43\%$	+0.71%	+0.68%	$\pm 0.43\%$	$\pm 0.71\%$
Preside Selection	-0.20%	-1.1%	-1.7%	-0.20%	-1.1%	-1.7%
Flavor Tagging	0.67%	10.4%	1.1%	0.67%	10.4%	1.1%
Non uniformity	0.016%		0.016%			
Cambined	$\pm 0.96\%$	+11.2%	+7.7%	+0.96%	+11.2%	+7.7%
Cambrined	-0.72%	-11.3%	-7.9%	-0.72%	-11.3%	-7.9%

Output of flavor fraction linear to typical bias: linearity can be used to extract uncertainty Only a methodology study. Need to be fulfilled with calibration

in real data

eeH uncertainty extrapolate from mumuH

Analysis with 3T sample

- No obvious change in the fitted results
- The recoil mass spectrum change as expected

3T sample disagreement in soft region

	3T	3.5T	Eff Ratio
Filter	4.5		
FSClasser			
$\cos \theta_z$	68.021%	68.619%	0.9913
$\cos heta_{\mu\mu}$	89.068%	89.052%	1.0002
Μμμ	88.390%	89.680%	0.9968
M_recoil	44.845%	45.302%	0.9899
2J+Lep_Veto	97.111%	98.397%	0.9869
JetnPFO	99.346%	97.403%	1.0199
$\cos heta_{ m JJ}$	91.916%	92.420%	0.9945
MJJ	94.528%	85.973%	1.0995
y-value	93.246%	94.013%	0.9918

- It seems the disagreement is from low energy neutral clusters
- Problems in survey, will be cleared soon

Technic development : Convolutional NN in Jets

We use CNN to separate H->qq and H-> ZZ*/WW*->qqqq

- CNN provides new to extract character in event with jets
- Should be useful need to know the multiplicity of jets: Higgs->qq, QCD measurements etc.
- Would like to know other types of character can be extracted: try to use in qqH channel

Summary

- Study of Higgs hadronic decay measurement in eeH/μμH/ννH/ qqH channel are done with full simulation sample, demonstrating the capability to achieve expected performance in CEPC
- $eeH/\mu\mu$ H redone with less MC-dependent way, systematic uncertainties studied in terms of methodology
- Precision of measurements with 3 Tesla magnitude in study. No significant change in final results but need to find out the result of disagreement with previous sample
- New analysis technics are studied and it is helpful to the analysis in future.