

CEPC Higgs Combination

Zhang Kaili¹, Cui Zhenwei², Wang Jin³, Liu Zhen⁴

- 1.Institute of High Energy Physics
- 2. Peking University
- 3. The University of Sydney
- 4. University of Pittsburgh

Workshop on the Circular Electron Positron Collider 2018.05.25 Rome

OUTLINE

• Why and How we do combination

• Results of $\sigma(ZH)$ * Br

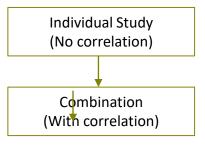
• κ Framework

• $H \rightarrow \mu\mu$ study

Summary

Why Combination?

- Uniformed, simultaneous statistical framework
 - Get likelihood scan result


Robust & Reliable;

- Correctly consider the correlations between individual channels
 - bb/cc/gg;

ZH bkg treatment;

WW fusion; width.....

- Extensibility
 - systematic uncertainties, theoretic assumptions.....
- Currently, with MC sample
 - Build Asimov* data from signal and bkg spectrum
 - To fit the estimated precisions of $\sigma * Br$, and κ .
 - Statistic calculation like Significance / Upper limit can also be applied;
 - Can do more with observed data in the future.
 - All the results based in Layout=CEPC_v1, ECM=250GeV, B=3.5T.

Implications like $\kappa, EFT \dots \dots$ For new physics models.

Fit techniques

- Input: Various. Binned/unbinned, 1d/2d spectrum used.
- Parameter of interest: $\sigma * Br$, Higgs coupling κ
 - $N_{total} = \mu * S + B$, $\mu = \sigma * Br = \frac{\kappa \kappa}{\Gamma}$ and share the same relative uncertainty;
- Nuisance parameter: Represents systematic uncertainties
 - more NPs can be introduced in the future.
 - currently results are all determined by statistical uncertainty.
- PDF: To describe the shape of the spectrum.
 - Mainly, signal: Double sided Crystal ball; bkg: 2rd-order poly exponential.
 - RooHistPdf/RooKeysPdf used for some channels;
- Algorithm: Likelihood Scan
 - Asymmetric result, from Minuit2; $\pm 1\sigma$ deviation from profile likelihood

Fit techniques

- For each channel
 - Input observables from MC sample.
 - Build combined S+B Pdf

$$Tot = N_{bb} * Pdf + N_{cc} * Pdf_{cc} + \dots + N_{bkg} * Pdf_{bkg}$$

For event number N_{bb}:

• When measure
$$\sigma * Br$$
,

$$N_{bb} = N_{bb SM} * \mu_{bb}$$

N_{bb SM} directly from event yield (5ab⁻¹)

$$N_{bb} = N_{bb_SM} * \frac{Br}{Br_{SM}} * \frac{\sigma(ZH)}{\sigma(ZH)_{SM}}$$

$$\Delta(\sigma(ZH)) = 0.50\%$$

• When measure
$$\kappa$$
,

$$N_{bb} = N_{bb SM}^* \kappa_z^2 (\kappa_w^2)^* \kappa_b^2 / \Gamma_H$$

• Channel share the same
$$\mu$$
s.

$$Z \rightarrow ee, \mu\mu, qq, \nu\nu$$
, share the same μ_{hh}

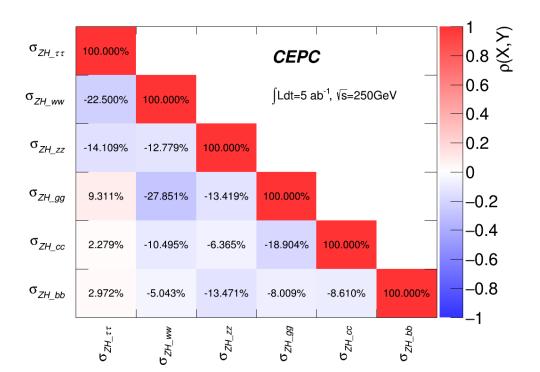
• Events number N_{bb} is float

and the Pdf shape fixed all the time.

- Use Combined pdf to make Asimov data
- Scan the likelihood and obtain the 1σ deviation

Channels Table

All channels scaled to 5ab⁻¹



Signal		Dracisian	Sig	nal	Duncisian	Sig	nal	Duocicion
Z	Н	Precision	Z	Н	Precision	Z	Н	Precision
H->qq				H->WW			H->ZZ	
	bb	1.6%		lvlv	9.2%	VV	μμηη	8.2%
ee	СС	23.6%	ee	evqq	4.6%	VV	eeqq	35.2%
	gg	13.3%		μνqq	3.9%	μμ	vvqq	7.3%
	bb	1.1%		lvlv	7.3%	ee	eeqq	35.1%
μμ	СС	14.8%	μμ	evqq	4.0%	ee	μμηη	23.0%
	gg 8.0%		μνηη	4.0%	ZH bkg contribution		19.4%	
	bb	0.5%		qqqq	2.0%	VV	H(WW fusio	on)
qq	СС	11.9%	\n\	evqq	4.7%	VV	bb	3.1%
	gg	3.9%	VV	μνqq	4.2%		Н→μμ	
	bb	0.4%		lvlv	11.3%	qq		
VV	СС	3.9%	qq	lvqq	2.2%(ILC)	ee		15.9%
	gg	1.5%	ZH bkg co	ntribution	3.0%	μμ	μμ	15.9%
	Η→ττ			Η→γγ, Ζγ		VV		
ee		2.8%	μμ+ττ		41.0%	H->In	visible	Br, Upper
μμ		2.8%	VV	γγ	13.7%	qq		0.8%
qq	ττ	1.0%	qq		10.3%	ee	ZZ(vvvv)	0.6%
VV		3.1%	VV	Ζγ(qqγ)	21.2%	μμ		0.6%

Treatment for ZH bkg

- In individual analysis, other ZH processes are tagged as bkg;
 - Signal in one channel can be bkg for another channel.
 - Should taken into account in combination.
 - $Z \rightarrow \mu\mu$, $H \rightarrow \tau\tau$, the main bkg is $H \rightarrow WW$.
 - These WW events should be considered in μ_{WW} .
 - Standalone WW channel 1.2% improved to 1.0% this way;
 - Combined fit for H->bb/cc/gg/ww/zz hadronic decay, Fully correlated.

Correlation: $vvH \rightarrow bb$

- 2d fit M_{jj}^{reco} & $Cos \theta_{jj}$
- Correlated with ZH process;
 - Fix ZH process, Initial error is 2.89%.
 - But must consider the uncertainty from ZH process.
- Use the likelihood from $Z \rightarrow ee/\mu\mu/qq$, $H \rightarrow bb$ to constrain
 - Already have the form of μ_{ZH} , no assumption made;
 - Esp., $vvH \rightarrow bb$ and $ZH \rightarrow bb$ share the anti-correlation -46%.
- Simultaneous Fit 3.1%; consistent with individual study 3.1%.

| Signal | CEPC CDR | Signal | Signal | CEPC CDR | Signal | Signa

Correlation: Higgs width

In Pre_CDR, width determined by

$$\Gamma_H = \frac{\Gamma_{H \to ZZ}}{Br(H \to ZZ)} \propto \frac{\sigma(ZH)}{Br(H \to ZZ)}$$
 and $\Gamma_H = \frac{\Gamma_{H \to bb}}{Br(H \to bb)} \propto \frac{\sigma(\nu\nu H \to \nu\nu bb)}{Br(H \to bWW)}$

- If two independent: 2.83%
- (consistent with pre_CDR, which gives 2.8%)
- But width correlated with all channels
 - Like correlation like $vvH \rightarrow vvbb$ and $ZH \rightarrow vvbb$ -46% not included:
- Combined fit in 10κ framework:

$$\Delta(\Gamma_H) = 3.3\%$$

Fit result of $\sigma(ZH) * Br$

(5ab ⁻¹)	Pre_CDR	Combined
σ(ZH)	0.51%	0.50%
$\sigma(ZH) * Br(H \rightarrow bb)$	0.28%	0.28%
$\sigma(ZH) * Br(H \rightarrow cc)$	2.2%	3.5%
$\sigma(ZH) * Br(H \rightarrow gg)$	1.6%	1.4%
$\sigma(ZH) * Br(H \rightarrow WW)$	1.5%	1.0%
$\sigma(ZH) * Br(H \rightarrow ZZ)$	4.3%	5.0%
$\sigma(ZH) * Br(H \to \tau\tau)$	1.2%	0.8%
$\sigma(ZH) * Br(H \rightarrow \gamma \gamma)$	9.0%	8.1%
$\sigma(ZH) * Br(H \rightarrow \mu\mu)$	17%	16%
$\sigma(vvH) * Br(H \rightarrow bb)$	2.8%	3.1%
$Br_{upper}(H \rightarrow inv.)$	0.28%	0.42%
$\sigma(ZH) * Br(H \rightarrow Z\gamma)$	\	4σ(21%)

bb: most precise, highly correlated with cc/gg due to flavor tagging algorithm (improving);

κ Framework

 κ defined as the ratio of the Higgs coupling to SM expects.

$$\kappa_f = \frac{g(hff)}{g(hff; SM)}, \ \kappa_V = \frac{g(hVV)}{g(hVV; SM)}$$

- Model independent implication
 - Detector's benchmark;

Constrain to new physics models;

- In CEPC
 - We have $\sigma(ZH) = 0.50\%$

constrain $\sigma(\kappa_z) < 0.25\%$.

For Production,

ZH & WW fusion process,

all contribute to κ_Z^2 ; κ_W^2 ;

For Partial decay,

no top quark κ_t like: κ_Z^2 , κ_W^2 , κ_h^2 , κ_c^2 , κ_a^2 , κ_τ^2 , κ_V^2 , κ_μ^2 ,

For Total width Γ_H . $\Gamma_H = \Gamma_{SM} + \Gamma_{RSM}$.

If we assume no exotic decay,

 Γ_{SM} can be resolved as:

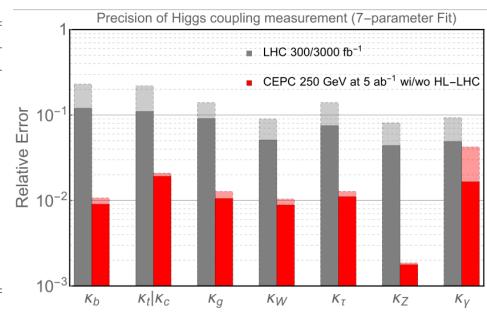
all κ correlated this way;

 $\Gamma_{SM} = 0.2137 \kappa_W^2 + 0.02619 \kappa_Z^2 + 0.5824 \kappa_D^2 + 0.08187 \kappa_q^2 + 0.002270 \kappa_V^2 + 0.06294 \kappa_\tau^2 + 0.02891 \kappa_c^2$

• $Z \to \mu\mu$, $H \to \tau\tau$ channel, the signal will be $\kappa_Z^2 \kappa_\tau^2 / \Gamma_H$; For $\nu\nu H \to bb$, it's $\kappa_W^2 \kappa_h^2 / \Gamma_H$

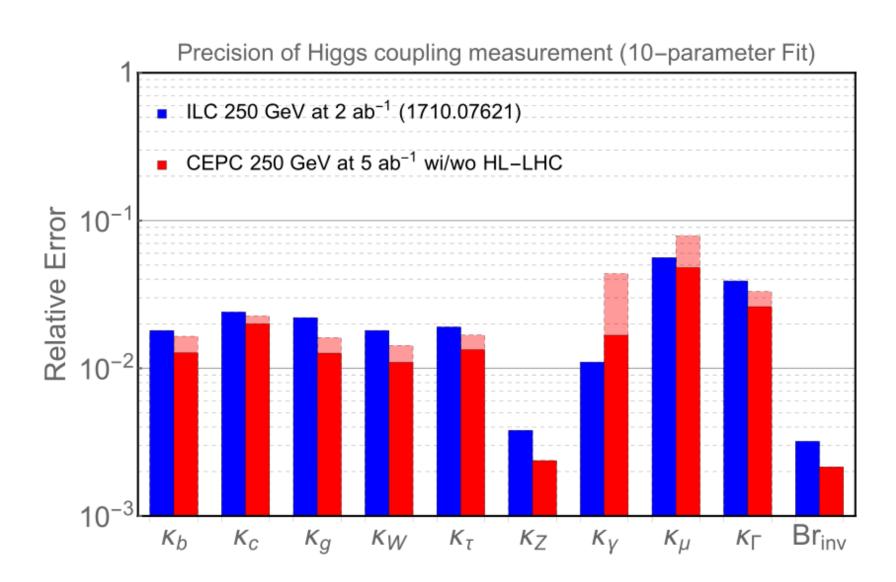
Fit result of κ

In different interpretation, Higgs width can be independent or resolved by branch ratio.



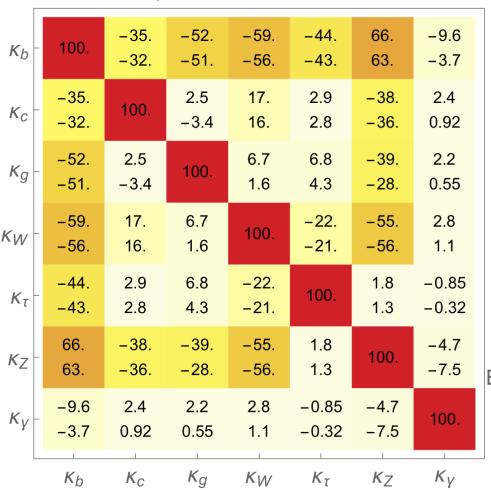
	10 <i>ĸ</i>	Pre_CDR	7 <i>ĸ</i>	Pre_CDR	
κ_b	1.6%	1.3%	1.0%	1.2%	
κ_{c}	2.3%	1.7%	2.1%	1.6%	
κ_{g}	1.6%	1.5%	1.2%	1.5%	
κ_{γ}	4.4%	4.7%	4.3%	4.7%	
$\kappa_{ au}$	1.6%	1.4%	1.1%	1.3%	
$\kappa_{ m Z}$	0.21%	0.26%	0.17%	0.16%	
κ_{W}	1.4%	1.2%	1.0%	1.2%	
κ_{μ}	8.1%	8.6%			
Br_{inv}	0.42%	0.28%	From 10κ to 7κ , we assume • No exotic decay Γ_{BSM} • Drop Br_{inv} • κ_{μ} = κ_{τ}		
$\Gamma_{\!H}$	3.3%	2.8%			

Integration to HL-LHC

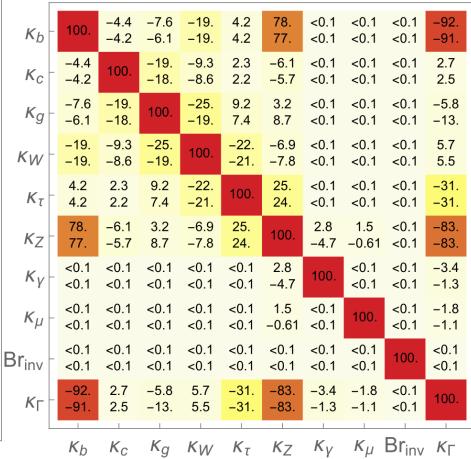

	10-pa	rameter fit	7-par	ameter fit
	CEPC	+HL-LHC	CEPC	+HL-LHC
Γ_h	3.2	2.5	_	_
κ_b	1.6	1.2	1.0	0.9
κ_c	2.3	2.0	2.1	1.9
κ_g	1.6	1.2	1.2	1.0
κ_W	1.4	1.1	1.0	0.9
$\kappa_{ au}$	1.6	1.2	1.1	1.0
κ_Z	0.21	0.21	0.17	0.16
κ_{γ}	4.4	1.7	4.3	1.7
κ_{μ}	8.1	4.9	_	_
BR_{inv}	0.31	0.31	_	_

*: here Br_{inv} for BSM.

Compared to ILC(1710.07621)



Correlation of κ


For each entry, upper one is CEPC result lower one is CEPC+HL-LHC result.

7-parameter fit Correlation

10-parameter fit Correlation

Summary

 $\sigma(\nu\bar{\nu}H) \times \mathrm{BR}(H \to b\bar{b})$

16%

< 0.42%

	Current
σ(ZH)	0.50%
$\sigma(ZH)*Br(H\to bb)$	0.28%
$\sigma(ZH)*Br(H\to cc)$	3.5%
$\sigma(ZH)*Br(H\to gg)$	1.4%
$\sigma(ZH) * Br(H \to WW)$	1.0%
$\sigma(ZH)*Br(H\to ZZ)$	5.0%
$\sigma(ZH)*Br(H\to\tau\tau)$	0.8%
$\sigma(ZH)*Br(H\to\gamma\gamma)$	8.1%
$\sigma(ZH)*Br(H o\mu\mu)$	16%
$\sigma(vvH) * Br(H \to bb)$	3.1%
$Br_{\rm upper}(H \to inv.)$	0.42%
$\sigma(ZH)*Br(H\to Z\gamma)$	4σ(21%)

	10 κ	7 ĸ
κ_b	1.6%	1.0%
$\kappa_{ m c}$	2.3%	2.1%
κ_{g}	1.6%	1.2%
κ_{γ}	4.4%	4.3%
$\kappa_{ au}$	1.6%	1.1%
$\kappa_{ m Z}$	0.21%	0.17%
κ_{W}	1.4%	1.0%
κ_{μ}	8.1%	
Br_{inv}	0.42%	
$\Gamma_{\!H}$	3.2%	

	10-pa	rameter fit	7-par	ameter fit
	CEPC	+HL-LHC	CEPC	+HL-LHC
Γ_h	3.2	2.5	_	_
κ_b	1.6	1.2	1.0	0.9
κ_c	2.3	2.0	2.1	1.9
κ_g	1.6	1.2	1.2	1.0
κ_W	1.4	1.1	1.0	0.9
$\kappa_{ au}$	1.6	1.2	1.1	1.0
κ_Z	0.21	0.21	0.17	0.16
κ_{γ}	4.4	1.7	4.3	1.7
κ_{μ}	8.1	4.9	_	_
$\mathrm{BR}_{\mathrm{inv}}^{\cdot}$	0.31	0.31	_	_

**	**	\ /	, , , , ,	
5.9 MeV	3.2%	0.50%	3.1%	
Decay mode		$\sigma(ZH) \times BR$	BR	
$H o b ar{b}$		0.28%	0.42%	
$H o c \bar c$		3.5%	3.5%	
H o gg		1.4%	1.5%	
$H o au^+ au^-$		0.8%	0.9%	
$H \to WW^*$		1.0%	1.1%	
$H o ZZ^*$		5.0%	5.0%	
$H \to \gamma \gamma$		8.1%	8.3%	

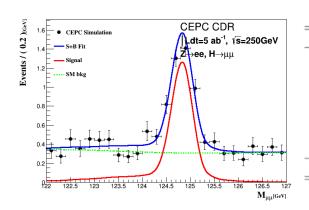
16%

 $\sigma(ZH)$

 Δm_H

 $H \rightarrow \mu^+ \mu^-$

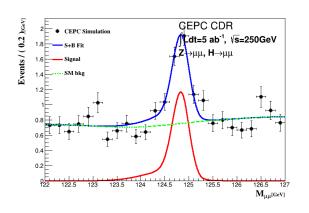
 $H \to \mathrm{inv}$


 Γ_H

More information to be added.

• Z->ee

 $H \rightarrow \mu\mu$

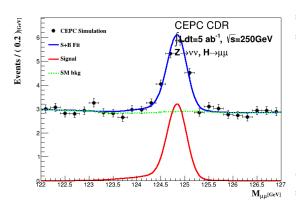


Cut 变量	signal	ZZ	WW(SW)	ZZorWW	SingleZ	2f
初始条件	4.7	18	0	9	22672	8.0
$120 < M_{\mu^+\mu^-} < 130$	4.3	0	0	0	747	0.0
$90.5 < M_{recoil_{\mu}} < 92.5$	2.5	0	0	0	34	0.0
$\cos_{\mu^{+}\mu^{-}}$ < -0.603	2.5	0	0	0	33	0.0
$P_{T_{\mu^+\mu^-}}$ < 62.5	2.5	0	0	0	31	0.0
$138.5 < E_{\mu^+\mu^-} < 139.7$	2.2	0	0	0	8	0.0
efficiency	46.8%					

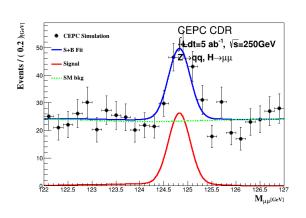
consider combination $\delta = (\frac{pair1.M}{\Delta Z})^2 + (\frac{pair2.M}{\Delta H})^2$ • Z->mm

$$\delta = (\frac{pair1.M}{\Delta Z})^2 + (\frac{pair2.M}{\Delta H})^2$$

• Choose $\Delta Z = 1.5, \Delta H = 0.75$


Category	signal	ZZ	WW(SW)	ZZorWW	SingleZ	2f
Preselection	6.6	17631.0	0	0	0	0.0
$120 < E_{\mu^+\mu^-} < 130$	6.0	1685.2	0	0	0	0.0
$90.6 < M_{recoil_{\mu}} < 93.4$	3.9	128.8	0	0	0	0.0
$90.2 < M_{\mu^+\mu^-}(Z) < 92.8$	3.2	58.1	0	0	0	0.0
$cos_{\mu^{+}\mu^{-}}(H) < -0.603$	3.2	50.0	0	0	0	0.0
$cos_{\mu^+\mu^-}(Z) < -0.364$	3.2	47.0	0	0	0	0.0
$138.0 < E_{\mu^+\mu^-}(H) < 139.8$	3.0	15.5	0	0	0	0.0
$P_{T_{\mu^{+}\mu^{-}}}(H) < 62.5$	3.0	14.7	0	0	0	0.0
efficiency	45.5%					

$H\rightarrow \mu\mu$


• Z->vv

• 38%

Cut 变量	signal	ZZ	WW(SW)	ZZorWW	SingleZ	2f
初始条件	41.7	34901	121952	489686	25619	1635887
$120 < M_{\mu^+\mu^-} < 130$	38.4	382	16677	56029	315	49490
MET>8.5	37.9	291	16264	53740	305	8600
$90.8 < M_{recoil_{\mu}} < 93.4$	24.0	96	834	2034	79	184
$\cos \theta_{Z\mu^{+}} < 0.999$	24.0	96	833	2034	79	126
$\cos \theta_{{ m Z}\mu^{-}} < 0.999$	24.0	96	833	2034	79	57
$cos\theta_{\mu^+}>0$	12.0	33	28	108	25	10
$cos\theta_{\mu^-} < 0$	9.1	22	11	86	17	9
efficiency	21.8%					

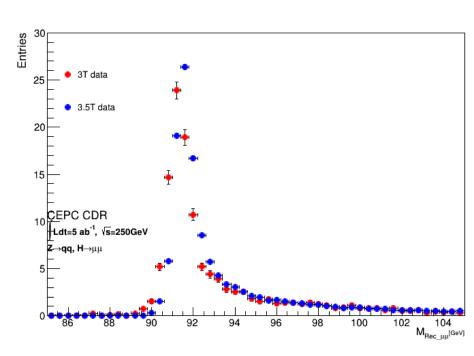
• Z->qq • 17%

Cut 变量	signal	ZZ	WW	ZZorWW	SingleZ	2f
初始条件	156.3	390775	183751	463361	101164	63217
$120 < M_{\mu^+\mu^-} < 130$	141.6	3786	181	227	244	100
$M_{j1}>4.2$ $M_{j2}>2.8$	133.0	3216	111	0	9	60
$M_{jj} > 76.0$	127.5	2917	2	0	8	59
$90.9 < M_{recoil}^{\mu^{+}\mu^{-}} < 93.5$	75.2	893	0	0	0	0
$20 < P_{T_{\mu^+\mu^-}} < 64$	74.5	777	0	0	0	0
-58 <p<sub>Z_{u+u}-<58</p<sub>	74.5	748	0	0	0	0
$\cos \theta_{\mu^{+}} > -0.98$ $\cos \theta_{\mu^{-}} < 0.98$	74.2	747	0	0	0	0
efficiency	47.5%					

• Combined:15.9%

$Z \rightarrow qq$, $H \rightarrow \mu\mu$ 3T

Full Simulation, Signal **Events scaled**

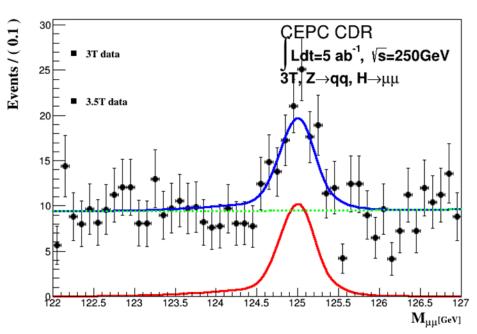

H mass

Entries 3T data 25 3.5T data 20 15 PC CDR Ldt=5 ab 1, s=250GeV **αα, Η**→μμ

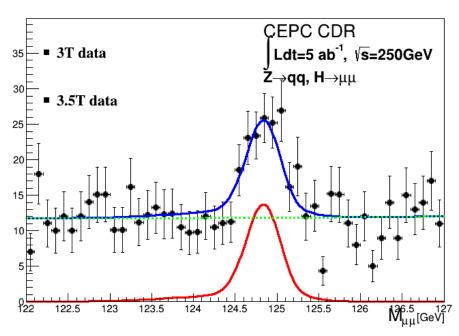
124.5

123.5

Z mass


Shift in the central value (0.2GeV), width no big change.

$Z \rightarrow qq$, $H \rightarrow \mu\mu$


Comparison

3T: 20.3%

3.5T: 17.6%

Due to the signal events loss 19% at the beginning. Reason under study.

Events(scaled)	3.5T	3T
$120 < M_{\mu\mu} < 130$	134.1	112.5

backup

Individual analysis

Explanation for difference

Pre_CDR	Combined
0.51%	0.50%
0.28%	0.28%
2.2%	3.5%
1.6%	1.4%
1.5%	1.0%
4.3%	5.0%
1.2%	0.8%
9.0%	8.1%
17%	16%
2.8%	3.1%
0.28%	0.42%
\	4σ(21%)
	0.51% 0.28% 2.2% 1.6% 4.3% 4.3% 9.0% 17% 2.8%

 bb,cc,gg: Due to flavor tagging algorithm, The template gives b/c likeness, updated algorithm has less cc candidate events left.

- WW: more subchannels studied and ZH bkg contribution.
- ZZ: The extrapolation in Pre_CDR from FCC-ee too optimistic.
- $\tau\tau$: τ finding algorithm updated.
- $\gamma\gamma$: different estimation from full/fast simulation.
- *vvH*: consider the correlation
- $H \to invisible$: Pre_CDR studied an exotic decay $H \to \chi_1 \chi_1$ and assuming 200fb⁻¹. Now we study the upper limit of $H \to ZZ \to \nu\nu\nu\nu$.

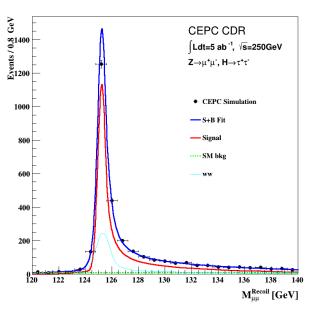
bb/cc/gg

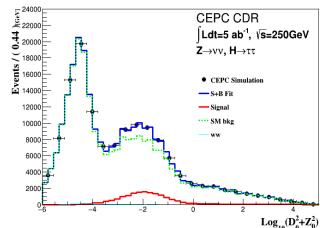
$$B_{likeness} = \frac{b_{j1}b_{j2}}{b_{j1}b_{j2} + (1 - b_{j1})(1 - b_{j2})}$$

- Template fit: Flavor tagging algorithm
 - $Z \rightarrow ee \mu\mu qq vv$, H $\rightarrow bb/cc/gg$ are studied.
 - 2D fit, with dijets' b/c likeness; mass info not used;
 - 7 parts, Tot=bb+cc+gg+ww+zz+tt+bkg_{sm}.
 - Build individual pdf by MC, then fit to determine fraction.
 - the shape of bkg is fixed.
 - · Which means we have a wonderful understanding with bkg,
 - may be more suitable for CEPC.
 - ToyMC test to get precision
 - Now plan to use 3d fit in IIH;
 - Systematic uncertainties ongoing;

Scan	μ_bb	µ_сс	μ_gg
ееН	1.3%	15.0%	8.2%
mmH	1.0%	11.3%	5.5%
qqH	0.5%	17%	7.2%
vvH	0.4%	3.9%	1.6%
Combined	0.28%	3.48%	1.44%

 $\tau \tau$


	preCDR	Now
ττ	1.2%	0.81%



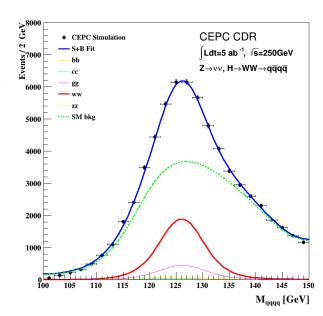
• Pre_CDR concludes the precision 1.2% but no description.

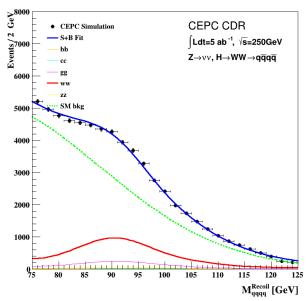
- Develop LICH to identify lepton. Eff>99%
- Signal and ZH events(Main WW) share the same shape
 - use $\log_{10}(D_0^2 + Z_0^2)$ fit to separate signal
 - Impact parameter, Distance from beam spot

	BR (H $\rightarrow \tau\tau$)	$\delta (\sigma \times BR)/(\sigma \times BR)$
$\mu\mu H$	6.40	2.68%
eeH(extrapolated)	6.37	2.72%
$\nu\nu H$	6.26	4.38%
qqH	6.23	0.93%
combined	6.28	0.81%

 preCDR
 Now

 WW
 1.5%
 1.0%




Currently have 17 channels of WW

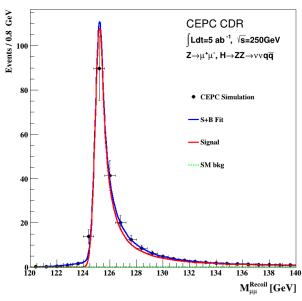
Sig	Dunaisian	
Z	Н	Precision
	H->WW	
	lvlv	9.2%
ee	evqq	4.6%
	μνqq	3.9%
	lvlv	7.3%
μμ	evqq	4.0%
	μναα	4.0%
	qqqq	2.0%
	evqq	4.7%
VV	μνqq	4.2%
	lvlv	11.3%
qq	lvqq	2.2%(ILC)
ZH bkg contribution		3.0%

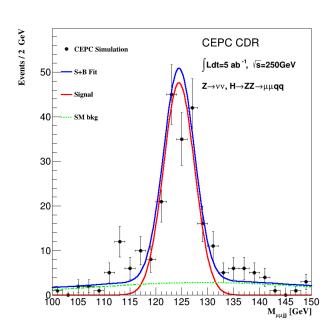
Green: studied

	Z	ee	μμ	vv	qq
ww	ev+ev				
	μν+μν				
	ev+μv				
	ev+qq				
	μν+qq				
	qq+qq				

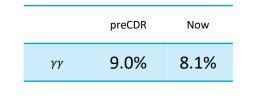
	preCDR	Now
ZZ	4.3%	5.0%

Channel	Precision	Comment
$\sigma(Z(\nu\bar{\nu})H + \nu\bar{\nu}H) \times BR(H \to ZZ)$	6.9%	CEPC Fast Simulation
${\rm BR}(H o ZZ^*)$	4.3%	Extrapolation from FCC-ee [36]



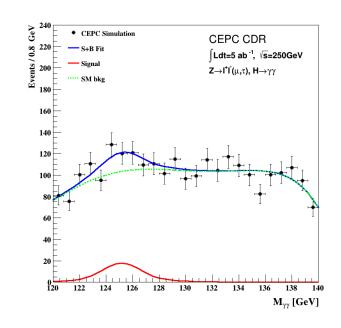

- Pre_CDR's result from extrapolating the FCC-ee.
- Now has 5 channels clear and easy to study

Sig	Drocision	
Z	Н	Precision
	H->ZZ	
VV	μμαα	8.2%
VV	eeqq	35.2%
μμ	vvqq	7.3%
ee	eeqq	35.1%
ee	μμαα	23.0%
ZH bkg contribution		19.4%
-		


Green: studied

	1		1	1	1
	Z	ee	μμ	VV	qq
ZZ	ee+qq				
	μμ+qq				
	vv+qq				
	11+11				
(Invi)	vv+vv				
	qq+qq				
	II+vv				

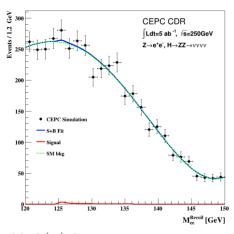
γγ

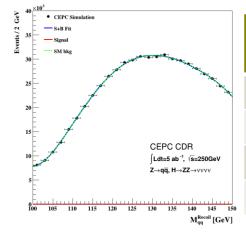


~ 2200 □	
\$\frac{2200}{2}	CEPC CDR
\$2000 	∫Ldt=5 ab ⁻¹ , √s=250GeV
21800	Z→q q , H→γγ
\$2000 - \$1800 - \$1800 -	
1600	
1400	
1200 CEPC Simulation	
CEPC Simulation	
1000 - S+B Fit	
800 Signal	174
F	· • • • • • • • • • • • • • • • • • • •
600 SM bkg	4
400	+
	+**
200	
115 120 125 130	135 140 145 150
113 120 123 130	M _{γγ} [GeV]
	11277 [30 7]

	$\mathbf{M}_{\gamma\gamma}\left[\mathbf{GeV} ight]$
* CEPC Simulation 5 600 - S+B Fit - Signal 500 - SM bkg	CEPC CDR ∫Ldt=5 ab ⁻¹ , √s=250GeV Z→νν, H→γγ
400	
300	
200	^
100	
100 105 110 115 120	125 130 135 140 145 150 $M_{\gamma\gamma}$ [GeV]

Signal		Drasisian		
Z	Н	Precision		
Н→γγ				
μμ+ττ		24.8%		
VV	γγ	11.7%		
qq		12.8%		


$H \rightarrow invisible$


preCDR Now

invisible 0.28% 0.42%

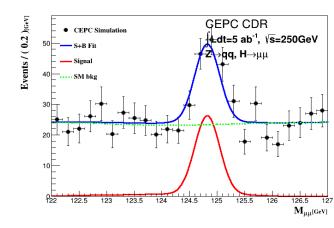
- Moxin studied H->ZZ->vvvv
 - Large irreducible bkg, use BDT and seek upper limit.
 - Huge fluctuation, use Asimov Data to get correct fit result.
 - precision 148%, upper limit for Br: 0.42%
 - Upper limit for BSM H->invisible: 0.31%

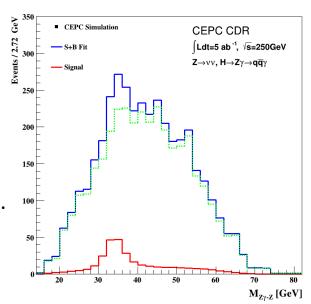
	Precision	significance	Br Upper limit
Z->ee	350%		0.84%
Z->mm	242%		0.62%
Z->qq	226%		0.59%
Combined	148%	0.68σ	0.42%

$\mu\mu$, $Z\gamma$ and others

preCDR Now

17% 16%


μμ



• $\mu\mu$ process

- Pre_CDR's 17% not reliable;
- Zhen Wei separate Z->ee,mm, vv and qq
- $Z \rightarrow qq$, $H \rightarrow Z\gamma \rightarrow qq\gamma$ studied;
 - Pre CDR not conclude;
 - Take $m_{Z\gamma-Z}$ as observable;
 - 4σ significance; Precision about 21%.

- $e\mu$, ee process studied.
 - Since low stats and no clear ratio, not taken into fit model.

