

Precise measurement of m_W and Γ_W using threshold scan method

Peixun Shen NanKai University

Workshop on the Circular Electron Positron Collider May 25 2018, Rome

Outline

- ➢ Motivation
- ≻Theoretical tool
- > Statistical and systematic uncertainties
- Data taking schemes
- ➤ Summary

Motivation

https://arxiv.org/abs/1701.07240

- ≻ The m_W and Γ_W play a central role in precision EW measurements and in constraint on the SM model through global fit.
- The direct measurement suffers the large systematic uncertainty, such as radiative correction, EW corrections, modeling of hadronization.
- The threshold scan method is more sensitive to the statistical of data and accelerator performance (this work)

Theoretical Tool

- → The σ_{WW} is a function of \sqrt{s} , m_W and Γ_W , which is calculated with the GENTLE package in this work
- → The ISR correction is also calculated by convoluting the Born cross sections with QED ISR radiator, with the radiator up to NL O(α^2) and O(β^3)

https://www.sciencedirect.com/science/article/pii/S0370269397007053 https://arxiv.org/pdf/hep-ph/0107154.pdf

	CC11	ISR	Coulumb	EW	QCD	
Gentle	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	

Statistical and systematic uncertainties

Workshop of CEPC, 24-26 May, Rome

Statistical uncertainty

$$\begin{split} > \Delta \sigma_{WW} &= \sigma_{WW} \times \frac{\Delta N_{WW}}{N_{WW}} = \sigma_{WW} \times \frac{\sqrt{N_{WW} + N_{bkg}}}{N_{WW}} \\ &= \sqrt{\frac{\sigma_{WW}}{L\epsilon P}} \qquad (P = \frac{N_{WW}}{N_{WW} + N_{bkg}}) \\ > \Delta m_W &= \left(\frac{\partial \sigma_{WW}}{\partial m_W}\right)^{-1} \times \Delta \sigma_{WW} = \left(\frac{\partial \sigma_{WW}}{\partial m_W}\right)^{-1} \times \sqrt{\frac{\sigma_{WW}}{L\epsilon P}} \\ > \Delta \Gamma_W &= \left(\frac{\partial \sigma_{WW}}{\partial \Gamma_W}\right)^{-1} \times \Delta \sigma_{WW} = \left(\frac{\partial \sigma_{WW}}{\partial m_W}\right)^{-1} \times \sqrt{\frac{\sigma_{WW}}{L\epsilon P}} \end{split}$$

With $L=3.2ab^{-1}$, $\epsilon=0.8$, P=0.9: $\Delta m_W=0.6$ MeV, $\Delta \Gamma_W=1.4$ MeV (individually)

Workshop of CEPC, 24-26 May, Rome

Systematic uncertainty

Beam energy uncertainty ΔE

 \succ With ΔE , the total energy becomes:

 $E = G(E_p, \Delta E) + G(E_m, \Delta E)$

- > E is used in the data simulation, and $E_0 = E_p + E_m$ is for the fit formula.
- The ΔM increases when ΔE enlarging , and almost independent with \sqrt{s} .

Beam energy spread uncertainty ΔE_{BS}

\succ With E_{BS} , the σ_{WW} becomes:

$$\sigma_{WW}(E) = \int_0^\infty \sigma_{WW}(E') \times G(E, E') dE'$$
$$\approx \int_{E-6\sqrt{2}\Delta E_{BS}}^{E+6\sqrt{2}\Delta E_{BS}} \sigma(E') \times \frac{1}{\sqrt{2\pi}\sqrt{2}E_{BS}} e^{\frac{-(E-E')^2}{2(\sqrt{2}E_{BS})^2}} dE'$$

$$\succ E_{BS}^{0} + \Delta E_{BS}$$
 is used in the simulation, and E_{BS} is for the fit formula.

The ΔE_{BS} will frees the m_W when taking data around 162.1 GeV

Correlated sys. uncertainty

- > The correlated sys. uncertainty includes: ΔL , $\Delta \sigma_{WW}$, $\Delta \epsilon$, ΔP
- Since $N_{tot} = L \cdot \sigma \cdot \frac{\epsilon}{P}$, these uncertainties affect Δm_W and $\Delta \Gamma$ in same way.
- ➢ We take *L* as example, and use the total correlated sys. uncertainty in data taking optimization:

$$\sigma^{sys}(corr) = \sqrt{\Delta L^2 + \Delta \sigma_{WW}^2 + \Delta \epsilon^2 + \Delta P^2}$$

Correlated sys. uncertainty ΔL (1)

Correlated sys. uncertainty ΔL (2)

> If there are more than 1 data taking points, the correlated sys. uncertainty can be constructed into the χ^2 :

$$\chi^{2} = \sum_{i}^{n} \frac{(y_{i} - h \cdot x_{i})^{2}}{\delta_{i}^{2}} + \frac{(h - 1)^{2}}{\delta_{c}^{2}}$$

 y_i , x_i are the true and fit results, h is a free parameter, δ_i and δ_c are the independent and correlated uncertainties.

> There will be no bias in the fit result with this method, and the $\Delta m_W(\Delta L)$ will be reduced.

Data taking scheme

With $L = 3.2 \ ab^{-1}$, $\epsilon P = 0.72$

Workshop of CEPC, 24-26 May, Rome

Taking data at one point (just for m_W)

There are two special energy points :

≻ The one which most statistical sensitivity to m_W : Δm_W (stat.) ~0.59 MeV at *E*=161.2 GeV

(with $\Delta \Gamma_W$ and ΔE_{BS} effect)

≻ The one Δm_W (stat)~0.68 MeV at $E \approx 162.5$ GeV

(with small $\Delta \Gamma_W$, ΔE_{BS} effects)

With $\Delta L (\Delta \sigma_{WW}, \Delta \epsilon, \Delta P) < 10^{-4}, \sigma^{sys}(\text{corr}) < 2 \times 10^{-4}$ $\Delta E = 0.5 \text{MeV}, \Delta E_{BS} = 10^{-2}, \Delta \Gamma_W = 42 \text{MeV}$

Taking data at two energy points

≻To measure Δm_W and $\Delta \Gamma_W$, we scan the energies and the luminosity fraction of the two data points:

1. $E_1, E_2 \in [155, 165]$ GeV, $\Delta E = 0.1$ GeV

2. $F \equiv \left(\frac{L_1}{L_2}\right) \in (0, 1), \quad \Delta F = 0.05$

Then we define the object function: $T = m_W + 0.1\Gamma_W$ to optimize the scan parameters (m_W is prior than Γ_W in the optimization).

Taking data at two energy points

* F=0.1

+ F=0.2

▲ F=0.3

▼ F=0.4

• F=0.5

F=0.6

F=0.7

▲ F=0.8

F=0.9

AT MeV

- \succ The 3D scan is performed, we just use 2D plots to illustrate the optimization results;
- \succ When draw the ΔT change with one parameter, another is fixed with scanning of the third one;
- \succ E₁=157.5 GeV, E₂=162.5 GeV (around $\frac{\partial \sigma_{WW}}{\partial \Gamma_W} = 0$, $\frac{\partial \sigma_{WW}}{\partial \Delta E_{RS}} = 0$) and F=0.3 are taken as the result.

(MeV)	σ^{sys} (corr)	ΔΕ	ΔE _{BS}	Stat.	Total
Δm_W	0.48	0.38	-	0.81	1.02
$\Delta\Gamma_W$	0.22	0.54	0.88	1.06	2.9

Taking data at three energy points

- ≻ Fit parameters: m_W , Γ_W , *h* (associated with σ_{sys}^{corr})
- > Scan parameters: E_1, E_2, E_3, F_1, F_2 $(F_1 = \frac{L_1}{L_2 + L_3}, F_2 = \frac{L_2}{L_3})$
- Scan procedure:

A. $E_1, E_2, E_3 \in (154, 165)$ GeV, $F_1, F_2 \in (0,1), \Delta E_i = 1, \Delta F_i = 0.1 (\sigma_{stat})$

B. $E_1 \in (154, 160), E_2, E_3 \in (160, 164), F_1 \in (0, 0.5), F_2 \in (0, 1), \Delta F_2 = 0.2$ (add σ_{sys}^{corr})

C. Obtain the Δm_W , $\Delta \Gamma_W$ with optimization result from step B ($\sigma_{stat} + \sigma_{sys}^{corr} + \Delta E + \Delta E_{BS}$)

Taking data at three energy points

Summary

- > The precise measurement of m_W and Γ_W is studied (threshold scan method)
- Different data taking schemes are used, based on the stat. and sys. uncertainties analysis.
- > With the configurations :

$$L = 3.2 \ ab^{-1}, \epsilon P = 0.72, \sigma_{sys}^{corr} = 2 \times 10^{-4}$$

$$\Delta E = 0.5 \text{ MeV}, E_{BS} = 1.6 \times 10^{-3}, \Delta E_{BS} = 0.01$$

Data points	Δm_W (MeV)	$\Delta\Gamma_{ m W}$ (MeV)					
1	0.9	-					
2	1.0	2.9					
3	1.0	2.8					

Backup

Theoretical Tool

- Process: CC11, the minimal gauge-invariant subset of Feyman diagrams
- ➢QED corrections: ISR, FSR, Coulomb, EM interaction of *W* pair
- EW correction: effective scale of the W pair production and decay process
- ≻QCD correction

Optimizing results for two data points

Workshop of CEPC, 24-26 May, Rome

 E_{1}, E_{2}

The z axis is the accumulation of the fit results

 $\Delta T \in (0.8, 3)$ MeV is required in further study

The normal distribution of E_1 : E_2 is break, and divide into two parts. $E_1 < 160$ GeV, $E_2 > 160$ GeV is used

Workshop of CEPC, 24-26 May, Rome

Workshop of CEPC, 24-26 May, Rome

shenpx@mail.nankai.edu.cn

E

 E_2

E₂=162.5 GeV

Workshop of CEPC, 24-26 May, Rome

shenpx@mail.nankai.edu.cn

F

Workshop of CEPC, 24-26 May, Rome

shenpx@mail.nankai.edu.cn

٠

0.8

0.8

With : $E_1 = 157.5$ GeV, $E_2 = 162.5$ GeV, $\sigma^{sys}(corr.) = 2 \times 10^{-4}$ (relative), $\Delta E_{BS} = 1.6 \times 10^{-3}$ (relative), $\Delta E = 0.5$ MeV

	Δm _W (MeV)					$\Delta \Gamma_W$ (MeV)						
F		Sys.					Sys.					
	Stat.	$\sigma(\text{corr.})$	ΔE	ΔE_{BS}	σ_{tot}^{sys}	Total	Stat.	$\sigma(\text{corr.})$	ΔE	ΔE_{BS}	σ_{tot}^{sys}	Total
0.1	0.71	0.47	0.35	—	0.92	0.92	4.6	0.31	0.52	0.43	0.74	4.7
0.15	0.73	0.47	0.37	_	0.94	0.94	3.7	0.28	0.52	0.55	0.8	3.8
0.2	0.76	0.45	0.37	—	0.96	0.96	3.3	0.26	0.52	0.60	0.84	3.4
0.25	0.78	0.46	0.37	_	0.98	0.98	3.0	0.23	0.51	0.76	0.94	3.1
0.3	0.81	0.48	0.38	_	1.02	1.02	2.7	0.22	0.54	0.88	1.06	2.9

Workshop of CEPC, 24-26 May, Rome

Optimizing results for three data points

Step A: E_1, E_2

The z axis is the acumulation of the fit result. The edge of the distributions will affect the optimization results.

$E_1 < 160, E_2 > 160$ GeV is used in further optimization

Workshop of CEPC, 24-26 May, Rome

Step A: E_1, E_2

The optimal regions of E_1 , E_2 are similar as two data points: $E_1 \sim (157, 158) \text{ GeV}, \quad E_2 \sim (162, 163) \text{GeV}$

Step A: F_1

The optimal region of F_1 is similar as two data points: $F_1 \sim 0.3$

Workshop of CEPC, 24-26 May, Rome

Optimization of E_1

- > Default values: $E_2=162 \text{ GeV}$ $E_3=161 \text{ GeV}$ $F_1 = F_2 = 0.5$
- We change one variable with fixing other three, and get the Δ*T* along *E*₁ distributions.
- $E_1 = 157.5 \text{ GeV} \text{ is taken as}$ the optimized result.

Optimization of E_2

- > Default values: $E_1 = 157 \text{ GeV}$ $E_3 = 161 \text{ GeV}$ $F_1 = F_2 = 0.5$
- We change one variable with fixing other three, and get the ΔT along E₂ distributions.
- ► $E_2 = 162.5$ GeV is taken as the optimized result.

Optimization of F_1

- > Default values: $E_1=157 \text{ GeV}$ $E_2=162 \text{ GeV}$ $E_3=161 \text{ GeV}$ $F_2=0.5$
- We change one variable with fixing other three, and get the ΔT along E₂ distributions.
- ➢ F_1 =0.3 is taken as the optimized result.

Step B

- ► Use the rough results from step A, the requirements below are used: $E_1 \in (155,160)$ $E_2 \in (160, 164)$ $E_3 \in (160, 164)$ $F_1 = 0.3, F_2 \in (0, 1)$ the σ_{SVS}^{corr} is considered in the fit.
- ► For each specific scan, 200 samplings are used, $\sigma_{WW} \sim G(\sigma_{WW}^0, \sigma_{sys}^{corr})$
- So we can get the results by fitting the distributions of m_W , Γ_W of the specific scan results.

Optimization of E_3 and F_2

E_3 =161.5 GeV and F_2 =0.9 are taken as the optimized results

Step B: E_1, E_2

Step B: F₂

The $F_2 = 0.9$ is used in further study

Workshop of CEPC, 24-26 May, Rome

Step B: E_3

The minimal result favors $E_3 \sim 161.5 \text{ GeV}$

Workshop of CEPC, 24-26 May, Rome

➤ Use the rough results from step B, the configurations below are used:

 $E_1 = 157.5, E_2 = 162.5, E_3 = 161.5, F_1 = 0.3, F_2 = 0.9$

 $\sigma_{svs}^{corr} = 2 \times 10^{-4}, \Delta E = 0.5 \text{ MeV}, E_{BS} = 1.6 \times 10^{-3}, \Delta E_{BS} = 0.01$

 $\sim \sigma_{WW} \sim G(\sigma_{WW}^0, \sigma_{Sys}^{corr}), E \sim G(E_p^0, \Delta E) + G(E_m^0, \Delta E), E_p^0 \text{ and } E_m^0 \text{ are smeared with } E_{BS}, \\ E_{BS} \sim G(E_{BS}^0, \Delta E_{BS})$

→ By 500 samplings, we fit the distributions of m_W , Γ_W , and the corresponding uncertainties are : $\Delta m_W \sim 1$ MeV, $\Delta \Gamma_W \sim 2.8$ MeV