Higgs results in ZZ final state with the CMS experiment

肖朦 (Johns Hopkins University)

Page 1?

LHC, CMS

SM

Higgs boson

This is page 1

From July 4th, 2012 seminar

From Peskin, Higgs Hunting, 2012 Our understanding of this boson will advance in stages.

- l expect 3 stages:
- 1. Are the major decay modes present?
- 2. Standard-Model-like Higgs boson, or not?
- 3. Are there small deviations from the Standard Model?

6 years later...

2012-2018

CMS Integrated Luminosity, pp

Are the major decay/production modes present?

The $ZZ^{(*)} \rightarrow 41$ decay mode CMS-PAS-HIG-18-001

2016+2017

Far beyond 10σ

The production modes

The production modes

CMS-PAS-HIG-18-001

Other decay/production modes

Other decay/production modes

arXiv:1804.02610 ttH observed

Standard Model like boson?

CMS-PAS-HIG-17-031 Consistency across channels

Spin-parity **Data favor 0+ scalar state** $H \rightarrow ZZ$ alone

PRD 89 (2014) 092007

17

All exotic models excluded > 98% CL

PRD 92 (2015) 012004

Small deviations from the SM?

()P mixture?

Λ_1 term leading momentum expansion

SM values of the couplings

Measure $f_{ai} = \cos(\theta) a_i^2 \sigma_i / (a_i^2 \sigma_i + a_1^2 \sigma_1)$

PRD 92 (2015) 012004

a₂ term CP even state

a₃ term CP odd state

How and where to measure

 $H \rightarrow \gamma \gamma$: only sensitive to non-spin0 $H \rightarrow WW$: no full kinematic information available $H \rightarrow Z(\gamma^*)Z^*(\gamma^*) \rightarrow 4I$: full kinematics available, angular information

$H \rightarrow Z(\gamma^*)Z^*(\gamma^*) \rightarrow 4I$, Matrix Element likelihood Analysis (MELA)

A. suppress background $\mathcal{D}_{bkg} = \frac{\mathcal{P}_{SM}}{\mathcal{P}_{SM} + c \times \mathcal{P}_{q\bar{q}ZZ}}$

$H \rightarrow Z(\gamma^*)Z^*(\gamma^*) \rightarrow 4I$, Matrix Element likelihood Analysis (MELA)

A. suppress background $\mathcal{D}_{bkg} = \frac{\mathcal{P}_{SM}}{\mathcal{P}_{SM} + c \times \mathcal{P}_{q\bar{q}ZZ}}$

B. separate BSM vs SM $\mathcal{D}_{J^P}^{\text{kin}} = \frac{\mathcal{P}_{\text{SM}}^{\text{kin}}}{\mathcal{P}_{\text{SM}}^{\text{kin}} + \mathcal{P}_{J^P}^{\text{kin}}}$

23

$H \rightarrow Z(\gamma^*)Z^*(\gamma^*) \rightarrow 4I$, Matrix Element likelihood Analysis (MELA)

A. suppress background $\mathcal{D}_{bkg} = \frac{\mathcal{P}_{SM}}{\mathcal{P}_{SM} + c \times \mathcal{P}_{q\bar{q}ZZ}}$

B. separate BSM vs SM $\mathcal{D}_{J^P}^{\text{kin}} = \frac{\mathcal{P}_{\text{SM}}^{\text{kin}}}{\mathcal{P}_{\text{SM}}^{\text{kin}} + \mathcal{P}_{J^P}^{\text{kin}}}$

C.isolate interference of BSM and SM

$$\mathcal{D}_{\text{int}} = \frac{\mathcal{P}_{J^P}^{\text{int}}(m_1, m_2, \vec{\Omega} | m_{4\ell})}{\mathcal{P}_{\text{SM}}^{\text{kin}} + \mathcal{P}_{J^P}^{\text{kin}}}$$

$H \rightarrow Z(\gamma^*)Z^*(\gamma^*) \rightarrow 4I$, Matrix Element likelihood Analysis (MELA)

A. suppress background $\mathcal{D}_{bkg} = \frac{\mathcal{P}_{SM}}{\mathcal{P}_{SM} + c \times \mathcal{P}_{q\bar{q}ZZ}}$

B. separate BSM vs SM $\mathcal{D}_{J^P}^{\text{kin}} = \frac{\mathcal{P}_{\text{SM}}^{\text{kin}}}{\mathcal{P}_{\text{SM}}^{\text{kin}} + \mathcal{P}_{J^P}^{\text{kin}}}$

C.isolate interference of BSM and SM

$$\mathcal{D}_{\text{int}} = \frac{\mathcal{P}_{J^P}^{\text{int}}(m_1, m_2, \vec{\Omega} | m_{4\ell})}{\mathcal{P}_{\text{SM}}^{\text{kin}} + \mathcal{P}_{J^P}^{\text{kin}}}$$

PRD 92 (2015) 012004 Anomalous coupling results at Run1

19.7 fb⁻¹ (8 TeV) + 5.1 fb⁻¹ (7 TeV)

0- and 0_h + excluded > 95% CL

CP mixture fa3 [-0.27, 0.28] a3/a1 [-1.54, 1.57]

26

Anomalous coupling at Run2

VBF and VH modes

- decay and production HVV coupling
- higher q² => better sensitivity

production vertex

decay vertex

Anomalous coupling at Run2

HZZ+HWW Expected: fa3: 0 ± 0.23

Phys. Lett. B 775 (2017) 1

Expected: fa3: 0 ± 0.01

Why precise mass measurement?

- SM self-consistency check, m_H contribute to mw
- determine the EW vacuum stability
- affect the coupling uncertainties
 - 100 MeV $\Delta mH => 0.9\% \Delta BR$
 - BSM correction to the couplings might be subtle

Mass measurement

arXiv:1310.8361v2

Model	κ_V	κ_b	κ
Singlet Mixing	$\sim 6\%$	$\sim 6\%$	\sim
$2 \mathrm{HDM}$	$\sim 1\%$	$\sim 10\%$	\sim
Decoupling MSSM	$\sim -0.0013\%$	$\sim 1.6\%$	$\sim -$
Composite	$\sim -3\%$	$\sim -(3-9)\%$	\sim –
Top Partner	$\sim -2\%$	$\sim -2\%$	\sim +

Mass measurement

 $m_{\rm H} = 125.26 \pm 0.20(stat.) \pm 0.08(sys.) \text{ GeV}$

Most precise mass measurement so far

On-shell width measurement JHEP 11 (2017) 047

(GeV)

 $\Gamma_{\rm H} < 1.1 \text{ GeV}$

Mass & Width: Run2

CMS-PAS-16-033

Any other deviation?

Direct search for BSM?

Search for additional Higgs

Res Mass

$H \rightarrow ZZ$, 3 final states

	41	2 2v	2 2q
BR (%)	0.453	2.692	9.422
olution (%)	1-3	_	3-7
range [GeV]	130-3000	200-3000	550-300

Search for ggH and VBF production

arXiv:1804.01939 Search for additional $Higgs^{\text{submitted to JHEP}}$

Fully analytical description for any (m_H , Γ_H) with the interference in 4I and 2l2q

H, h, B interference

4

2|2q

arXiv:1804.01939 Search for additional Higgs submitted to JHEP

No significant excess observed

- $m_H (130 3000 \text{ GeV}), \Gamma_H (0 30\%)$
- **Excluded xsec in the grid of Model independent inputs for many BSM theories**

ggF+VBF

VBF

- The ZZ final state provides a long list to check things about the Higgs boson
 - Existence? ✓
 - SM like? ✓
 - Precisely SM???
 - Couplings of decay and productions?
 - Anomalously couplings ?
 - Mass?
 - Width?
 - Differential distributions?
 - BSM Higgs search?
- We are in an era of precision measurement, and the list is expanding
 - Off-shell differential...

More data (3000 fb⁻¹) and more ideas waiting for us! So far only analyzed ~70 fb⁻¹

Additional slides

Anomalous coupling with production

VH(bb) to measure HVV (V=Z,W) coupling

sensitive to small anomalous couplings

Phys. Lett. B 759 (2016) 672

