Using AMPT Study: The Directed Flow in Au+Au Collisions at $\sqrt{s_{NN}} = 7.7 - 200$ GeV

Kishora Nayak¹, Shusu Shi¹, Nu Xu^{1,2}

¹Central China Normal University, Wuhan, China ²Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China

The 7th Asian Triangle heavy-lon Conference (ATHIC 2018)

November 3-6, 2018, University of Science and Technology of China, Hefei, AnHui, China

Outline

- **Introduction and motivation**
- **MPT** analysis details
- **Magnetic Results**
 - Directed flow (v₁) of identified hadrons
 - v₁ comparison with experimental data
 - Partons' v₁
- Summary and outlook

Introduction

Directed flow, v₁:

- It is generated during the nuclear passage time (2R/γ~0.1 fm/c) and hence it probes the earliest stage of collision dynamics (Ref: arXiv:1407.5003)
- The spectators deflected from dense reaction zone are sensitive to the **pressure** and also have strong sensitivity towards the **EoS**
- It describes the sideward motion of the particles within the reaction plane

Motivation

 $s = K^{-}(\bar{u}s) - \frac{1}{2}\bar{p}(\bar{u}\bar{u}\bar{d})$

An experimental approach of AMPT-SM model analysis

with reference to STAR data paper:

Coalescence sum rule: If deconfined quarks already acquired azimuthal anisotropy, then coalescence leads to v_n of the resulting hadrons being the summed v_n of their constituent quarks

$$(v_n)_{(hadron)} = \sum (v_n)_{constituent \; quark}$$

(i) Coalescence sum rule for v₁:

lt

assumed,
$$\bar{u}, \bar{d}$$
 quarks have same flow and so s, \bar{s} quarks

(ii) Disentangle the effect of transported and produced quarks

$$v_{1p} = r(y)v_{1\bar{p}} + [1 - r(y)]v_{1\text{ net }p}; \quad r(y) = \bar{p}/p$$

Essential for understanding the particle production mechanism at various energies

Phys. Rev. Lett. 120, 062301 (2018) (STAR Collaboration)

AMPT analysis details

- No. of events : ~1 million for AMPT-String Melting
- AMPT-SM. : **1.5 mb, c***τ* = **0.6 fm/c**
- Energy (GeV) : 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4, 200
- Hadrons : π^+ , π^- , \mathbf{K}^+ , \mathbf{K}^- , $\mathbf{K}^{\mathbf{0}}_{\mathbf{S}}$, \mathbf{p} , $\bar{\mathbf{p}}$, Λ , $\bar{\Lambda}$, Ξ^- , Ξ^+
- Partons. : \mathbf{u} , $\mathbf{\bar{u}}$, \mathbf{d} , $\mathbf{\bar{d}}$, \mathbf{s} , $\mathbf{\bar{s}}$

The p_T cut used here for identified hadrons are similar to experimental data analysis

All the particles and anti-particles are identified via their corresponding Pythia-ID (PID)

AMPT-SM: *v*¹ *vs y* [10-40%]

Rapidity (y)

Compared with data: v₁ vs y [10-40%]

Black solid circles are experimental data and color markers are AMPT-SM

Phys. Rev. Lett. 120, 062301 (2018)

AMPT-SM: Partons' v₁

- \checkmark Strong rapidity and energy dependence of quarks and anti-quarks
- \checkmark Difference between quark and anti-quark v1 value increases with decrease in energy
 - ⇒Similar v₁ values for quark and anti-quark at 200 GeV unlike 7.7 GeV

Produced partons slope $vs \sqrt{s_{NN}}$

✓ Difference between quark and anti-quark v_1 value increases with decrease in energy

- \checkmark Similar v₁ values for **u** and **d** quarks unlike **s** quark
- \checkmark Negative v1 values of quarks and anti quarks decreases with increase in energy
 - ➡At 200 GeV all quarks and anti-quarks have positive v₁ values unlike 7.7 GeV

Phys. Rev. Lett. 120, 062301 (2018)

AMPT-SM: slope *vs* √*s*_{NN} [10-40%]

✓ Qualitative similarity between net K and data unlike net p, net A where no sign change is observed

AMPT-SM: slope *vs* √*s*_{NN} [10-40%]

✓ In [net $p - \frac{1}{3}\bar{p} + s$], produced u quark is replaced with s quark and \bar{u} from $\frac{1}{3}\bar{p}$ ✓ Transported quarks dominant at lower energies (< 14.5 GeV) and more produced quarks at high energy

Summary

- A significant species dependence of rapidity odd component of directed flow from lower (7.7 GeV) to higher energy (200 GeV) in AMPT-SM
- Higher value of net p, net Λ and net K⁺ v₁ at 7.7 GeV compared to 200 GeV suggests that both the contribution of transported quarks at lower energy is more compared to high energy
- Transported and produced quarks have different v₁ values
- Strange and anti-strange quark don't have the same flow over all energies as assumed in experiment
- Particle production via quark coalescence seems better at higher energies

Outlook

AMPT-Default model might give us more insight to understand v₁ at lower energies

Acknowledgement : We would like to thank *Prof. Zi-Wei Lin* for his time and in-depth discussion which was very helpful to understand the AMPT results

thank you!

STAR: Directed flow (v₁):

