The QED Radiative Corrections to Chiral Magnetic Effect

Bo Feng,¹ De-fu Hou,² Hai-cang Ren^{2,3}

¹Huazhong University of Science and Technology, Wuhan, China ²Huazhong Normal University, Wuhan, China ³The Rockefeller University, USA

ATHIC 2018, USTC

2 Operator anomaly and its matrix elements

Three-loop AVV function with photon rescattering

Charged massless quarks in a magnetic field

Chirality	Right-handed		Left-handed	
Charge	+	_	+	_
Spin polarization	1	\downarrow	1	\downarrow
Momentum	1	\downarrow	\downarrow	1
Electric current	↑	↑	↓	↓

• with a net axial charge Q₅(chiral imbalance)

$$\mathbf{J}=\mathbf{J}_R+\mathbf{J}_L\neq\mathbf{0}$$

CME in non-central HIC

• an extremely large magnetic field created in non-central HIC

transition between vacuum with different topologies in QCD

• Introduce chiral imbalance by hand

Chiral imbalance \Leftrightarrow Nonzero chiral chemical potential μ_5

$$H
ightarrow H - \mu_5 \int d^3 x ar{\psi} \gamma^0 \gamma^5 \psi$$

The relation of CME current to chiral anomaly

The CME current

$$J_i(oldsymbol{
ho}) = \eta \mu_5 \mathcal{K}_{ij}(oldsymbol{
ho}) \mathcal{A}_j(oldsymbol{
ho}) + \mathcal{O}(\mu_5^3)$$

• In terms of the AVV three point function $\Lambda_{\mu\nu\rho}(Q_1, Q_2)$

$$Q_1 = (\mathbf{q}, i(\omega + \frac{k_0}{2})),$$

 $Q_2 = (-\mathbf{q}, i(-\omega + \frac{k_0}{2}))$

the coefficient

$$\mathcal{K}_{ij}(q) = \Lambda_{ij4}(q,-q) = -i \lim_{k_0 o 0} rac{1}{k_0} (Q_1 + Q_2)_
ho \Lambda_{ij
ho}(Q_1,Q_2)$$

• the chiral anomaly

$$(Q_1+Q_2)_
ho \Lambda_{\mu
u
ho}(Q_1,Q_2)=-irac{e^2}{2\pi^2}\epsilon_{\mu
ulphaeta}Q_{1lpha}Q_{2eta}$$

It follows that

$$K_{ij}(q) = i rac{e^2}{2\pi^2} \epsilon_{ikj} q_k$$

Then the CME current

$$\mathbf{J} = \frac{\boldsymbol{e}^2}{2\pi^2} \mu_5 \mathbf{B} \tag{1}$$

There are, however, two shortcomings in the above establishment

 distinction between chiral anomaly at the operator level and its matrix element

only the former one is free from radiative corrections.

2 the constant μ_5 limit in eq.(1) becomes subtle at finite temperature

$$\lim_{k_0 \to 0} \lim_{\mathbf{k} \to 0} \neq \lim_{\mathbf{k} \to 0} \lim_{k_0 \to 0}$$
(2)

note that in the limiting process $\lim_{k\to 0} \lim_{k\to 0} i_{k_0\to 0}$, the relation of CME current to chiral anomaly becomes unclear.

• The operator equation of the anomaly

$$\partial_{\mu} j^{5}_{\mu} = 2 i m j^{5} + i \frac{\alpha_{0}}{4\pi} \epsilon_{\rho\sigma\lambda\nu} F_{\rho\sigma} F_{\lambda\nu}$$

the coefficient of the anomalous term is exactly $\alpha_0/4\pi$ and does not involve an unknown power series in the coupling constant coming from higher orders in perturbation theory. Adler and Bardeen (1969')

 The matrix element between the vacuum and a state with two photons of momenta Q₁, Q₂

$$(Q_1 + Q_2)_{\mu}\Lambda_{\mu\rho\lambda}(Q_1, Q_2) = -i\left[2mG\left(\frac{Q_1^2}{m^2}, \frac{Q_2^2}{m^2}, \frac{Q_1 \cdot Q_2}{m^2}\right) + H\left(\frac{Q_1^2}{m^2}, \frac{Q_2^2}{m^2}, \frac{Q_1 \cdot Q_2}{m^2}\right)\right] \times \epsilon_{\rho\lambda\alpha\beta}Q_{1\alpha}Q_{2\beta}$$

in low energy limit

$$2mG(0,0,0) + H(0,0,0) = 0, \quad H(0,0,0) = \frac{2\alpha}{\pi}$$

• For massless fermions, the low energy kinematic point cannot be attained, the matrix elements receive radiative corrections.

Radiative corrections from photon-photon rescattering

Photon rescattering contribution to the AVV function Ansel'm and loganson (1989')

• The anomalous Ward identity

$$(\mathcal{Q}_1+\mathcal{Q}_2)_
ho \Lambda_{\mu
u
ho}(\mathcal{Q}_1,\mathcal{Q}_2) = -irac{e^2}{2\pi^2}\epsilon_{\mu
ulphaeta}\mathcal{Q}_{1lpha}\mathcal{Q}_{2eta} imes \left(1-rac{3e^4}{64\pi^4}\lnrac{\Lambda^2}{k^2}
ight)$$

The kernel of CME current becomes

$$\mathcal{K}_{ij}(\boldsymbol{q}) = i rac{oldsymbol{e}^2}{2\pi^2} \mu_5 \epsilon_{ikj} oldsymbol{q}_k \left(1 - rac{3 oldsymbol{e}^4}{64\pi^4} \ln rac{\Lambda^2}{k^2}
ight)$$

 Likewisely, the same diagrams with two internal photons replaced by two gluons may also contribute to CME.

BF, De-fu Hou, Hai-cang Ren

Radiative corrections at finite temperature

At finite temperature, the results correspond to the two limits

$$\lim_{Q_0 \to 0} \lim_{\mathbf{Q} \to 0}, \quad \lim_{\mathbf{Q} \to 0} \lim_{Q_0 \to 0}$$

may be different.

- The order $\lim_{Q_0 \to 0} \lim_{\mathbf{Q} \to 0}$
 - The AVV triangle in real-time formulation(e.g., CTP) is diagonal, i.e., only 111 and 222 components survive.
 - For static external momenta, the real-time formulation reduces to Mastubara one.

The photon box is free from IR singularity, thus

$$\Gamma_{mnij}(0,0;k) = \left. \frac{\partial}{\partial q_l} \Gamma_{mnij}(q,q;k) \right|_{q=0} = 0$$

the three-loop diagrams would be at order of $\mathcal{O}(\bm{q}^2)$ and thus do not contribute to CME.

BF, De-fu Hou, Hai-cang Ren

QED Radiative Corrections to CME

- The order $\lim_{\mathbf{Q}\to 0} \lim_{Q_0\to 0}$
 - The AVV triangle may not be diagonal W.R.T the CTP indices.
 - For static external momenta, the real-time formulation reduces to Mastubara one.

$$\Gamma_{mnij}(0,0;k) = \left. \frac{\partial}{\partial q_l} \Gamma_{mnij}(q,q;k) \right|_{q=0} = 0$$

$$\Gamma_{mnij}(q,q;0) = \left. \frac{\partial}{\partial k_l} \Gamma_{mnij}(q,q;k) \right|_{k=0} = 0$$

Thus, the amplitude of the box

p

$$\Gamma \simeq \mathcal{O}(\mathbf{q}^2 \mathbf{k}^2)$$

 q_2

Then Coleman-Hill theorem(for 3D QED) can apply and the chain diagrams can be ruled out. *Coleman and Hill (1985')*

Summary and Conclusions

Summary of our results of CME up to three-loop massless QED:

• the kernel of CME current

$$\mathcal{K}_{ij}(\mathbf{q}) = i rac{e^2}{2\pi^2} \mathcal{F}_s\left(rac{|\mathbf{q}|}{T}
ight) \epsilon_{ikj} q_j$$

- In low temperature limit(T << |**q**|): F_s(|**q**|/T) → 1 3e⁴/64π⁴ ln A²/q²
 At finite temperature(T>|**q**|): for lim_{Q→0} lim_{Q→0}, F_s(|**q**|/T) → 1 for lim_{Q→0} lim_{Q→0}, F_s(|**q**|/T) → 0
- Out results apply to the case with static external magnetic field, i.e., $|\mathbf{q}| >> q_0$. In non-central HIC, according to simulations, the magnetic field created therein has a life time smaller than its spatial size rendering $|\mathbf{q}| << q_0$.

Kharzeev and Warringa (2009'); Hou, Liu and Ren (2011')

• The higher order contributions in QCD is much more complicated due to the gluon's self-coupling and the potential IR singularity is more severe than QED.