





### Ze-Fang Jiang<sup>1</sup>, Tamás Csörgő<sup>2,3</sup>,

### C. B. Yang<sup>1</sup>, Máté Csanád<sup>4</sup>.

<sup>1</sup>Central China Normal University, Wuhan, China
 <sup>2</sup>Wigner RCP, Budapest, Hungary
 <sup>3</sup> EKU KRC, Gyöngyös, Hungary
 <sup>4</sup> Eötvös University, Budapest, Hungary

Presented at "the ATHIC2018", Nov 3-6 th 2018 (Hefei). Special thanks to: Xin-Nian Wang, T. S. Biró, M. I. Nagy.

### Motivation

The next phase ... will focus on <u>detailed investigations of the QGP</u>, "both to <u>quantify its properties</u> and to understand precisely how they emerge from the fundamental properties of QCD"

-- The frontiers of nuclear science, a long range plan

- What is the initial temperature and thermal evolution of the produced matter?

- What is the viscosity of the produced matter? ... http://www.bnl.gov/physics/rhiciiscience/

### **Results of perfect fluid**

The exact solutions and results of the perfect fluid with longitudinal accelerating flow. (CNC, CKCJ solutions)

Csörgő, Nagy, Csanád (CNC) arXiv: 0605070, 0710.0327, 0805.1562, Csanád, et. arXiv:1609.07176. Z. F. Jiang, et. arXiv: 1711.10740, 1806.05750. Csörgő, et. arXiv: 1805.01427, 1806.11309, 1810.00154. (See Z. F. Jiang, C. B. Yang, M. Csanád, T. Csörgő, Phys. Rev. C 97,(2018) 064906, T. Csörgő, G. Kasza, M. Csanád, Z. F. Jiang, Universe 4, (2018), 69.)

### Outline

The next phase ... will focus on <u>detailed investigations of the QGP</u>, "both to <u>quantify its properties</u> and to understand precisely how they emerge from the fundamental properties of QCD"

-- The frontiers of nuclear science, a long range plan

- What is the initial temperature and thermal evolution of the produced matter?
- What is the viscosity of the produced matter? ... http://www.bnl.gov/physics/rhiciiscience/

### Outline

- 1. A perturbative solution of viscous hydrodynamics.
- 2. Final state spectrum (a toy model) compared with RHIC and the LHC data.
- 3. Summary and outlook.
  - Z. F. Jiang, et. arXiv:1808.10287 (Accepted by Chin. Phys. C).

### Relativistic accelerated viscous hydrodynamic

Longitudinal acceleration effect makes the fluid cooling faster. (CNC, CKCJ solutions) The viscosity will creating heat and makes the fluid cooling slower.

$$T^{\mu\nu} = e u^{\mu} u^{\nu} - (p + \Pi) \Delta^{\mu\nu} + \pi^{\mu\nu}$$

$$u^{\mu} = (\cosh \Omega, 0, 0, \sinh \Omega) \quad \Delta^{\mu\nu} = g^{\mu\nu} - u^{\mu}u^{\nu}$$

Shear viscosity tensor:  $\pi^{\mu\nu}$  Bulk viscosity:  $\Pi$ .

**Shear tensor:** 

$$\sigma^{\mu\nu} \equiv \partial^{\langle\mu} u^{\nu\rangle} \equiv \left(\frac{1}{2} (\Delta^{\mu}_{\alpha} \Delta^{\nu}_{\beta} + \Delta^{\mu}_{\beta} \Delta^{\nu}_{\alpha}) - \frac{1}{d} \Delta^{\mu\nu} \Delta_{\alpha\beta} \right) \partial^{\alpha} u^{\beta}.$$

The fundamental equations of the viscous fluid:

$$e = \kappa p$$
,  $\partial_{\mu}T^{\mu\nu} = 0$ .







### Equations of viscous hydrodynamic

The second law of thermodynamics:  $\partial_{\mu} S^{\mu} \ge 0$ 

$$\tau_{\pi} \Delta^{\alpha \mu} \Delta^{\beta \nu} \pi_{\alpha \beta} + \pi^{\mu \nu} = 2 \eta \sigma^{\mu \nu} - \frac{1}{2} \pi^{\mu \nu} \frac{\eta T}{\tau_{\pi}} \partial_{\lambda} \left( \frac{\tau_{\pi}}{\eta T} u^{\lambda} \right)_{\text{Israel-Stewart}}$$

$$\tau_{\Pi}\dot{\Pi} + \Pi = -\zeta \left(\partial \cdot u\right) - \frac{1}{2}\Pi \frac{\zeta T}{\tau_{\Pi}} \partial_{\lambda} \left(\frac{\tau_{\Pi}}{\zeta T} u^{\lambda}\right)$$

equations.

viscous hydro: near-equilibrium system

### The Navier-Stokes approximation,

$$\pi^{\mu\nu} = 2\eta \sigma^{\mu\nu} \qquad \Pi = -\zeta \left( \partial_{\rho} u^{\rho} \right)$$

The shear viscosity and bulk viscosity,

Strongly coupled AdS/CFT prediction:  $\eta/s \ge 1/4\pi \approx 0.08$  D.T. Son, et,al. 05

Via lattice calculation:

 $\zeta/s \le 0.015 (\text{for } 3T_c)$  H.B. Meyer, et,al. 07 10.3717

### Accelerating viscous hydrodynamic equation

Based on the conservation law, the energy equation and Euler equations are :

$$De = -(e + P + \Pi)\theta + \sigma_{\mu\nu}\pi^{\mu\nu}$$

$$\begin{cases} D = u^{\mu} \partial_{\mu}, \quad \theta = \nabla_{\mu} u^{\mu} \\ \nabla^{\alpha} = \Delta^{\mu \alpha} \partial_{\mu}, \quad \Delta^{\mu \nu} = g^{\mu \nu} - u^{\mu} u^{\nu} \end{cases}$$

 $(e+P+\Pi)Du^{\alpha} = \nabla^{\alpha}(P+\Pi) - \Delta^{\alpha}_{\nu}u_{\mu}D\pi^{\mu\nu} - \Delta^{\alpha}_{\nu}\nabla_{\mu}\pi^{\mu\nu}$ 

### Accelerating viscous hydrodynamic equation

In Rindler coordinates (accelerate coordinates), the energy equation and Euler equation reduce to:

$$\tau \frac{\partial T}{\partial \tau} + \tanh(\Omega - \eta_s) \frac{\partial T}{\partial \eta_s} + \frac{\Omega'}{\kappa} T = \frac{\prod_d \Omega'^2}{\kappa} \cosh(\Omega - \eta_s),$$

$$\begin{cases} \Omega' = \frac{\partial \Omega}{\partial \eta_s} \\ \Pi_d = \left(\frac{\zeta}{s} + \frac{2\eta}{s}(1 - \frac{1}{d})\right) \end{cases}$$

$$\tanh(\Omega - \eta_s) \left[ \tau \frac{\partial T}{\partial \tau} + T\Omega' \right] + \frac{\partial T}{\partial \eta_s} = \frac{\prod_d}{\kappa} \left[ 2\Omega'(\Omega' - 1) + \Omega'' \coth(\Omega - \eta_s) \right] \sinh(\Omega - \eta_s)$$

Bjorken approximation: Without accelerating: Without Viscosity:  $\prod_d \neq 0 \ \Omega(\eta_s) = \eta_s$  $\Pi_d = 0, \ \Omega(\eta_s) \neq \eta_s$  $\Pi_d = 0, \ \Omega(\eta_s) = \eta_s$ J.D.Bjorken, Phys.Rev. D27 CKCJ solutions, A. Muronga, Phys. Rev. C69 (2004), 034904. (1983) 140-151. Universe 4 (2018), 69.  $\Omega = \lambda \eta_s = (1 + \varepsilon) \eta_s, \qquad |\mathcal{E}| << 1.$ Both are non-zero,  $\Pi_d \neq 0 \quad \begin{array}{l} \lambda: \text{ the constant proper acceleration.} \\ \epsilon: \text{ the acceleration parameter.} \end{array}$ a perturbative case. 7

## Solutions form hydrodynamic equations



Contribution from ideal terms.

Contribution from viscous effect

$$R_0^{-1} = \frac{\Pi_d}{T_0 \tau_0}$$

Reynolds number [A. Muronga, arXiv: 0309055]

A non-zero Reynolds numbers  $R_0^{-1}$  makes cooling rate smaller, A non-vanishing acceleration  $\epsilon$  makes the cooling rate is larger.

Open question: setting viscosity as the perturbative term.

(Z.F. Jiang, C.B. Yang, T. Csörgő, M. Csanád, M. Nagy. In preparing.)

### **Temperature** evolution



- Acceleration effect comes from the pressure gradient, makes the cooling ratio **larger** than non-acceleration flow.

[M. Nagy, T. Csörgő, M. Csanád: arXiv:0709.3677v1]

- EoS is an important modified factor.
  - $\kappa$ =1 a very special case, CNC solution.

κ=7 comes from [PHENIX, arXiv:nucl-ex/0608033v1].

- Viscosity effect make the cooling rate samller. [H. Song, S. Bass, U. Heinz. et, PRL2011]

### **Temperature** evolution



### The final state spectrum

#### Freeze-out hypersurface:

$$p_{\mu}d\Sigma^{\mu} = m_T \tau_f \cosh^{\frac{2-\Omega'}{\Omega'-1}} ((\Omega'-1)\eta_s) \cosh(\Omega-y) r dr d\phi d\eta_s$$

[M. I. Nagy, T. Csörgő, M. Csanád: arXiv:0709.3677v1]

The transverse momentum distribution (a toy model):

$$\begin{aligned} \frac{d^2N}{2\pi p_T dp_T dy} &= \frac{\pi R_0^2}{(2\pi)^3} \int_{-\infty}^{+\infty} m_T \cosh((\epsilon+1)\eta_s - y) \exp\left[-\frac{m_T}{T(\tau,\eta_s)} \cosh((\epsilon+1)\eta_s - y)\right] \\ &\times \left(\tau_f \cosh^{\frac{1-\epsilon}{\epsilon}}(\epsilon\eta_s) + \frac{1+\epsilon}{T^3(\tau,\eta_s)} \left[\frac{1}{3}\frac{\eta}{s}(p_T^2 - 2m_T^2\sinh^2((\epsilon+1)\eta_s - y)) - \frac{1}{5}\frac{\zeta}{s}(p_T^2 + m_T^2\sinh^2((\epsilon+1)\eta_s - y))\right]\right) d\eta_s\end{aligned}$$

-  $f_0 + \delta f$ , Boltzmann approximation, from K. Dusling and D. Teaney (2010).

- Temperature solution, viscosity, acceleration parameter, mass, ...

D. Teaney, 2003. P. R. C 68, 034913, a special case when there is no acceleration effect ( $\epsilon$ =0).

### Transverse momentum distribution

#### Numerical results:



**Transverse momentum distribution:** 

- the longitudinal acceleration effect is little,
- the viscous effect play a important role for distribution,
- the distribution is sensitive to the EoS.

### (Pseudo-) Rapidity distribution

### Rapidity distribution

Contribution from perfect fluid

$$\frac{dN}{dy} = \frac{\pi R_0^2}{(2\pi)^3} \int_0^{+\infty} \left\{ \cosh^{\frac{1-\epsilon}{\epsilon}}(\epsilon\eta_s) \frac{4\tau_f T^3(\tau,\eta_s)}{\cosh^2((\epsilon+1)\eta_s - y)} + \frac{48(1+\epsilon)T^2(\tau,\eta_s)}{\cosh^4((\epsilon+1)\eta_s - y)} \right. \\ \left. \times \left[ \frac{1}{3} \frac{\eta}{s} (1-2\sinh^2((\epsilon+1)\eta_s - y)) - \frac{1}{5} \frac{\zeta}{s} \cosh^2((\epsilon+1)\eta_s - y) \right] \right\} d\eta_s$$

Rapidity distribution, - the integral value  $error \propto m^3$ , this is a good approximation for the particle that mass *m* is little.

#### Pseudo-rapidity distribution

$$\frac{dN}{d\eta} = \frac{\pi R_0^2}{(2\pi)^3} \int_{-\infty}^{+\infty} d\eta_s \int_0^{+\infty} dp_T \sqrt{1 - \frac{m^2}{m_T^2 \cosh^2 y}} m_T p_T \cosh((\epsilon + 1)\eta_s - y) \exp\left[-\frac{m_T}{T(\tau, \eta_s)} \cosh((\epsilon + 1)\eta_s - y)\right] \times \left(\tau_f \cosh^{\frac{1-\epsilon}{\epsilon}}(\epsilon\eta_s) + \frac{1+\epsilon}{T^3(\tau, \eta_s)} \left[\frac{1}{3}\frac{\eta}{s}(p_T^2 - 2m_T^2 \sinh^2((\epsilon + 1)\eta_s - y)) - \frac{1}{5}\frac{\zeta}{s}(p_T^2 + m_T^2 \sinh^2((\epsilon + 1)\eta_s - y))\right]\right)$$

Contribution from perfect fluid

Contribution from viscous effect

## Particle's distribution (toy model)

#### Numerical results (Rapidity distribution):



#### Acceleration parameter extracted from RHIC and the LHC data:

| $\sqrt{s_{NN}}$ /[GeV] |                           | $\left. \frac{dN}{d\eta} \right _{\eta=\eta_0}$ | $\epsilon$          | $\chi^2/NDF$ |
|------------------------|---------------------------|-------------------------------------------------|---------------------|--------------|
| 130                    | Au+Au                     | $563.9 {\pm} 59.5$                              | $0.076 {\pm} 0.003$ | 9.41/53      |
| 200                    | Au+Au                     | $642.6 {\pm} 61.0$                              | $0.062{\pm}0.002$   | 12.23/53     |
| 200                    | $\mathrm{Cu}+\mathrm{Cu}$ | $179.5 {\pm} 17.5$                              | $0.060 {\pm} 0.003$ | 2.41/53      |
| 2760                   | Pb+Pb                     | $1615{\pm}39.0$                                 | $0.035 {\pm} 0.003$ | 5.50/41      |
| 5020                   | Pb+Pb                     | $1929{\pm}47.0$                                 | $0.032{\pm}0.002$   | 33.0/27      |
| 5440                   | Xe+Xe                     | $1167{\pm}26.0[41]$                             | $0.030 {\pm} 0.003$ | -/-          |

$$\epsilon = A \left( \frac{\sqrt{s_{NN}}}{\sqrt{s_0}} \right)^{-B}$$
$$\sqrt{s_0} = 1 \text{ GeV}$$

v

A = 0.045 and B = 0.23

Z.F. Jiang, C.B. Yang, Chi Ding, Xiang-Yu Wu. arXiv: 1808.10287.

#### Particle's distribution

- at finial state, the dn/dy and  $dn/d\eta$  are effected sensitively by the acceleration parameter.
- This toy model's prediction for XeXe@5440 GeV works well! -
- A simple description of acceleration parameters is obtained. -

## Particle's distribution (toy model)

#### Numerical Results (Rapidity distribution):



Numerical results (pseudo-rapidity distribution):



#### Particle's distribution

- at finial state, the dn/dy and  $dn/d\eta$  are effected sensitively by the acceleration parameter.
- This toy model's prediction for XeXe@5440 GeV works well!
- A simple description of acceleration parameters is obtained.

### A brief summary and outlook

### Summary:

 A perturbative solution with both longitudinal accelerating effect and viscous correction are obtained.
 The final state spectrum are obtained, this toy model described well the RHIC and the LHC data.

### Outlook:

1. 2rd I-S problem, magnetohydrodynamics (MHD) and CLVisc 3+1D numerical code;

2. Fast parton disturbance evolution on medium background...







arXiv: 1609.07176, 1711.10740, 1805.01427, 1806.05750, 1808.10287...







## CNC solutions of relativistic hydrodynamics

Hydrodynamics can be a universal tool to study the QGP. In Rindler coordinate, 4 different parameters of the parameters  $\lambda$ , d,  $\kappa$  and  $\phi$  for 5 possible cases as follows ( $\lambda$  is the accelerate parameter.): Csörgő, Nagy, Csanád(CNC) arXiv: 0605070

| Case | λ   | d | κ        | $\phi$              | 0710.0327, 0805.1562,                                 |
|------|-----|---|----------|---------------------|-------------------------------------------------------|
| a.)  | 2   | R | d        | 0                   | <ul> <li>accelerating, d dimension</li> </ul>         |
| b.)  | 1/2 | R | 1        | $(\kappa+1)/\kappa$ | - dimonsional (T.S. Birá)                             |
| c.)  | 3/2 | R | (4d-1)/3 | $(\kappa+1)/\kappa$ | $\leftarrow a$ dimensional (1. S. Diro)               |
| d.)  | 1   | R | R        | 0                   | ⇐ Hwa-Bjorken, Buda-Lund type                         |
| e.)  | R   | R | 1        | 0                   | <ul> <li>Special EoS, but general velocity</li> </ul> |

In all ideal cases, the velocity field and the pressure is expressed as :

$$v = \tanh \lambda \eta_s, \quad p = p_0 \left(\frac{\tau_0}{\tau}\right)^{\lambda d \frac{(\kappa+1)}{\kappa}} \left(\cosh \frac{\eta_s}{2}\right)^{-(d-1)\phi}$$

#### **Rapidity distribution:**

#### **Pseudorapidity distribution:**

| $\frac{\mathrm{d}N}{\mathrm{d}N} \approx \frac{\mathrm{d}N}{\mathrm{d}N}$ | $\cosh^{\pm\frac{\alpha}{2}-1}(\frac{y}{2})e^{-\frac{m}{T_f}[\cosh^{\alpha}(\frac{y}{\alpha})-1]}$ |                     |
|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------|
| dy dy                                                                     | $\sum_{y=0}^{y=0} \alpha^{y=0}$                                                                    | <b>v</b> - <b>v</b> |

$$\frac{dN}{d\eta} \approx \frac{\overline{p}}{\overline{E}} \frac{dn}{dy} = \frac{\overline{p_T} \cosh \eta}{\sqrt{m^2 + \overline{p_T}^2}} \frac{dN}{dy}$$

$$\alpha=\frac{2\lambda-1}{\lambda-1}.$$



### The pseudorapidity distributions

#### Results for 130 GeV Au+Au and 200 GeV Au+Au collisions



21

#### Results for 130 GeV Au+Au and 200GeV Au+Au collisions



#### **Results for 200 GeV Cu+Cu collisions**



(See Z.F. Jiang, C.B. Yang, M. Csanád, T. Csörgő, Phys. Rev. C 97, 064906)

#### **Results for 2.76 TeV Pb+Pb collisions**



#### **Results for 2.76 TeV Pb+Pb collisions**



(See Z.F. Jiang, C.B. Yang, M. Csanád, T. Csörgő, Phys. Rev. C 97, 064906)

- Hydro can be used to estimate the initial  $\epsilon_0$ . (J. D. Bjorken, Phys. Rev. D27 (1983) 140-151. Gyulassy M, Matsui T. 1984. Phys. Rev. D29: 419) - The larger the center of mass energy, the smaller the acceleration parameter  $\lambda$ . The bigger  $\langle N_{part} \rangle$ , the bigger  $\lambda$ .

- From the fits, the initial energy density, initial temperature and initial pressure are reconstructed.

New results for 13 TeV pp collision and 5.02 TeV PbPb collision, see arXiv:1806.05750.

### The pseudorapidity distributions

#### **Results for 7 TeV & 8 TeV p+p collisios:**



(M. Csanád, T. Csörgő, Z.F. Jiang. C.B. Yang, Universe. vol 3(2017). pp 1-9.)

| $\sqrt{S}$ | ${\cal E}_{B{ m j}}$ | $f_{c}$ | ${\cal E}_{\rm corr}$ | λ     | $c_s^2$ | $dN / d\eta \Big _{\eta=0}$ |
|------------|----------------------|---------|-----------------------|-------|---------|-----------------------------|
| 7 TeV      | 0.507                | 1.262   | 0.640                 | 1.073 | 0.10    | 5.895(NSD)                  |
| 8 TeV      | 0.500                | 1.240   | 0.644                 | 1.067 | 0.10    | 5.38(Inelastic)             |

#### **Results for 7 TeV & 8 TeV p+p collisions:**

8 TeV

0.500

1.240



0.644

1.067

0.10

5.38(Inelastic)

#### **Results for 7 TeV & 8 TeV p+p collisios:**



(M. Csanád, T. Csörgő, Z.F. Jiang. C.B. Yang, Universe. vol 3(2017). pp 1-9.)

| •          | · · · · · · · · · · · · · · · · · · ·    |         | •                     |       |         |                                      |
|------------|------------------------------------------|---------|-----------------------|-------|---------|--------------------------------------|
| $\sqrt{S}$ | ${oldsymbol{\mathcal{E}}}_{B\mathrm{j}}$ | $f_{c}$ | ${\cal E}_{\rm corr}$ | λ     | $c_s^2$ | $\mathrm{d}N / d\eta \Big _{\eta=0}$ |
| 7 TeV      | 0.507                                    | 1.262   | 0.640                 | 1.073 | 0.10    | 5.895(NSD)                           |
| 8 TeV      | 0.500                                    | 1.240   | 0.644                 | 1.067 | 0.10    | 5.38(Inelastic)                      |

### The CKCJ solutions

#### The new CKCJ family of exact hydro solutions

$$\begin{split} \eta_{x}(H) &= \Omega(H) - H, \\ \Omega(H) &= \frac{\lambda}{\sqrt{\lambda - 1}\sqrt{\kappa - \lambda}} \arctan\left(\sqrt{\frac{\kappa - \lambda}{\lambda - 1}} \tanh(H)\right), \\ \sigma(\tau, H) &= \sigma_{0} \left(\frac{\tau_{0}}{\tau}\right)^{\lambda} \mathcal{V}_{\sigma}(s) \left[1 + \frac{\kappa - 1}{\lambda - 1} \sinh^{2}(H)\right]^{-\frac{\lambda}{2}}, \\ T(\tau, H) &= T_{0} \left(\frac{\tau_{0}}{\tau}\right)^{\frac{\lambda}{\kappa}} \mathcal{T}(s) \left[1 + \frac{\kappa - 1}{\lambda - 1} \sinh^{2}(H)\right]^{-\frac{\lambda}{2\kappa}}, \\ \mathcal{T}(s) &= \frac{1}{\mathcal{V}_{\sigma}(s)}, \\ s(\tau, H) &= \left(\frac{\tau_{0}}{\tau}\right)^{\lambda - 1} \sinh(H) \left[1 + \frac{\kappa - 1}{\lambda - 1} \sinh^{2}(H)\right]^{-\lambda/2} \end{split}$$

### T. Csörgő, G. Kasza, M. Csanád, Z.F. Jiang, CKCJ solutions: arXiv: 1805.01427 Universe. vol 4(2018). 69.

For more details, see:

HBT from the CKCJ solution - theoretical results for the lifetime determination.

### The CKCJ solutions

#### Final state observables:

$$\left. \frac{dn}{dy} \approx \frac{dn}{dy} \right|_{y=0} \cosh^{-\frac{1}{2}\alpha(\kappa) - 1} \left( \frac{y}{\alpha(1)} \right) \exp\left( -\frac{m}{T_f} \left[ \cosh^{\alpha(\kappa)} \left( \frac{y}{\alpha(1)} \right) - 1 \right] \right),$$

$$\frac{dn}{d\eta_p} \approx \frac{dn}{dy} \Big|_{y=0} \frac{\langle p_T(y) \rangle \cosh(\eta_p)}{\sqrt{m^2 + \langle p_T(y) \rangle^2 \cosh(\eta_p)}} \cosh^{-\frac{1}{2}\alpha(\kappa) - 1}\left(\frac{y}{\alpha(1)}\right) \exp\left(-\frac{m}{T_f} \left[\cosh^{\alpha(\kappa)}\left(\frac{y}{\alpha(1)}\right) - 1\right]\right),$$

# T. Csörgő, G. Kasza, M. Csanád, Z.F. Jiang, CKCJ solutions: arXiv: 1805.01427 Universe. vol 4(2018). 69.

For more details, see:

HBT from the CKCJ solution - theoretical results for the lifetime determination.

### The CKCJ solutions

#### Results for 7 TeV & 8 TeV p+p collisios at CMS:



For a new method to estimate the initial energy density from the CKCJ solution.

See Fits of the CKCJ solutions to RHIC and LHC data (dn/deta, Rlong, initial energy density).