Light flavour hadron production in Xe-Xe collisions at $\sqrt{s_{NN}} = 5.44$ TeV

Sourav Kundu (For the ALICE collaboration) National Institute of Science Education and Research, HBNI, Jatni, INDIA

Motivation

■ The measurement of a comprehensive set of **light-flavor hadrons** in heavy-ion collisions provides input to determine the properties of the **bulk of the system**

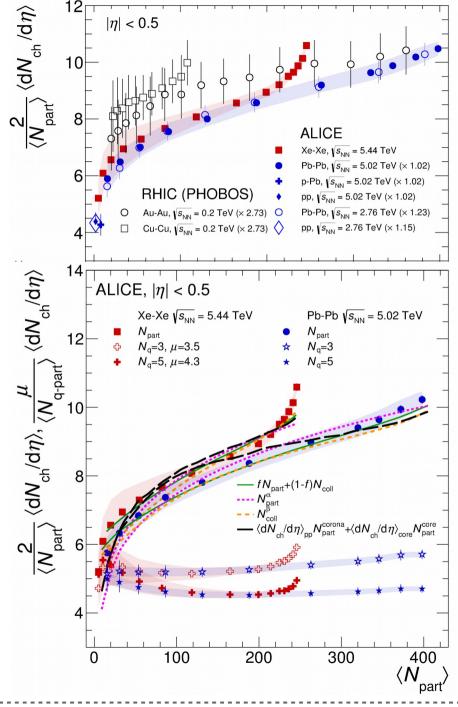
Particle yields and ratios: Chemistry of the system

Chemical freeze-out — Thermal model fit to particle yield

Strangeness enhancement — by looking at the strange and multistrange particle productions

Hadronic re-scattering — by studying short-lived resonances

 p_{T} differential spectra and ratios, mean p_{T} : Dynamics of the system

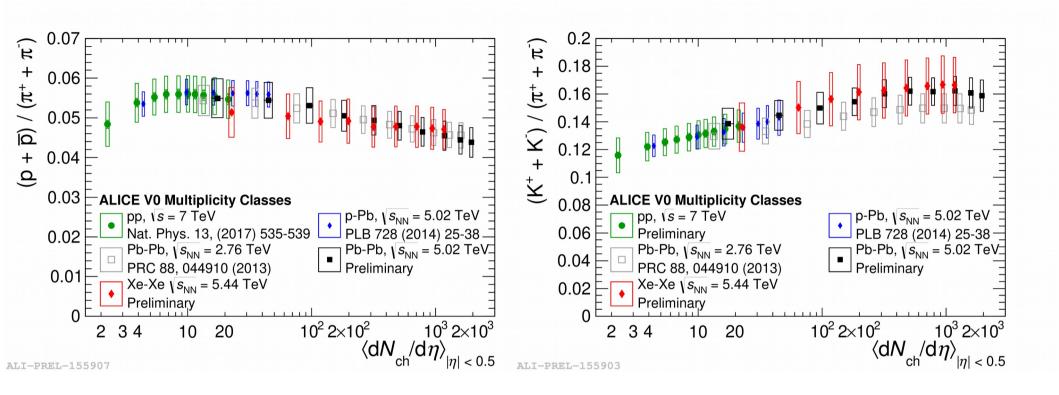

Radial flow — Comparison to Hydrodynamical model

Kinetic freeze-out → Blast-Wave model fit

Energy loss in the medium \rightarrow by measuring nuclear modification factor (R_{AA})

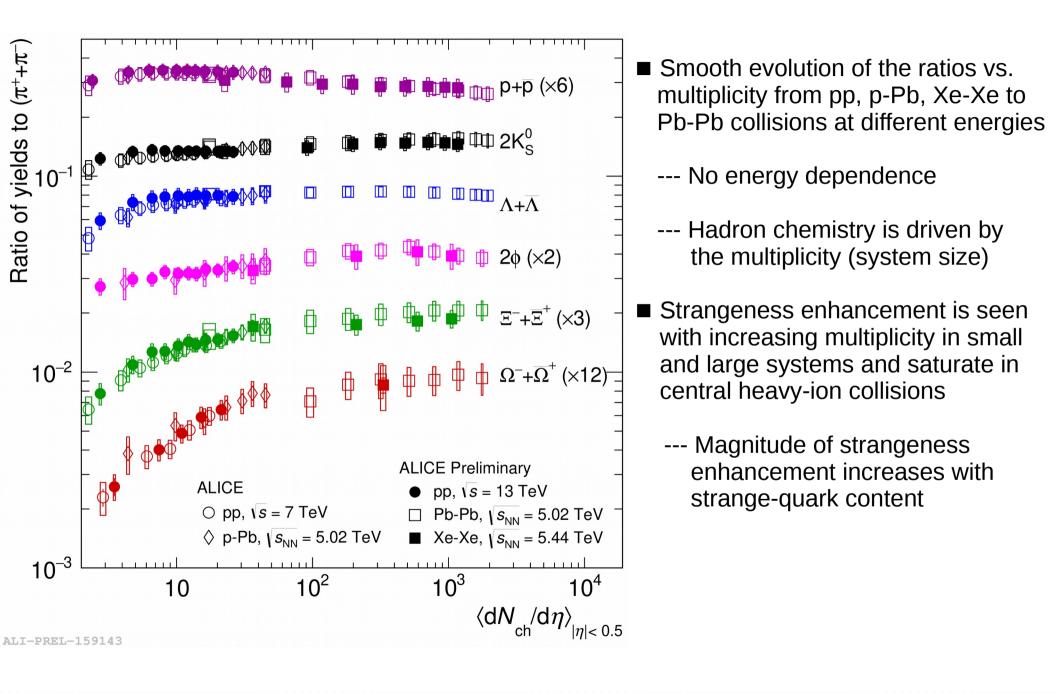
Run-2 Xe-Xe collisions will allow us to investigate the system size dependency of bulk properties of the system with an intermediate system between p-Pb and Pb-Pb

Charged particle multiplicity

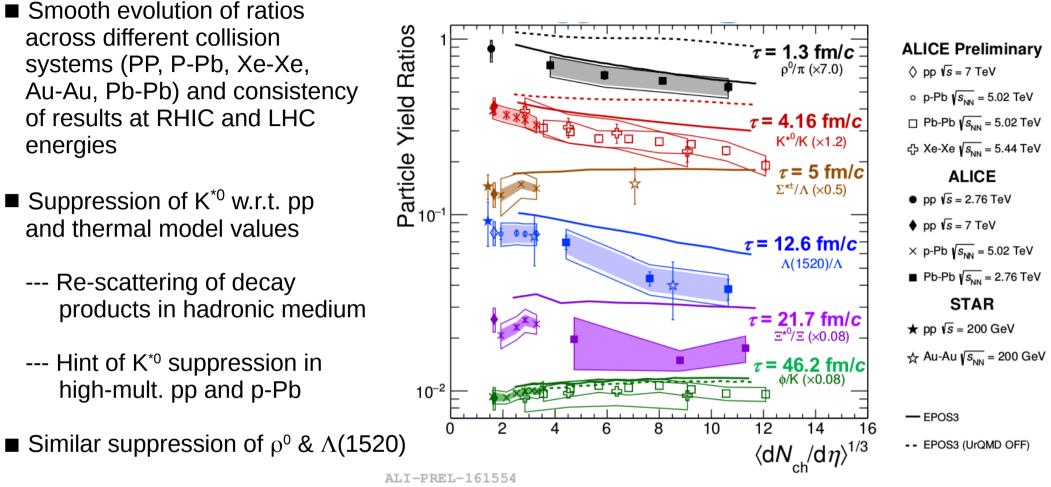


- N_{part} scaling is violated, now confirmed by new measurements in Xe-Xe collisions
 - --- About a factor of two increase from peripheral to central collisions
 - --- Reproduced by several models
 - Central collisions of Xe-Xe produce more particles per participant than semi-central collisions of Pb-Pb at similar N_{part}
 - --- Not explained by participant-quark scaling
 - --- Not reproduced by models
 - --- Hint of similar behavior in Cu-Cu/Au-Au

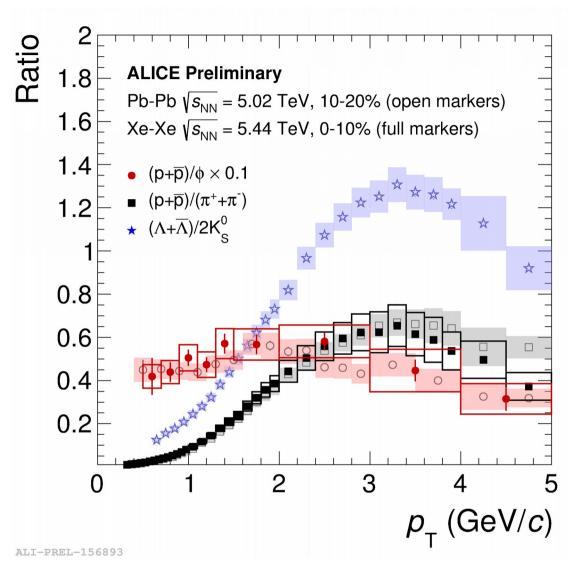
ALICE, arXiv:1805.04432


3

Particle ratios: pp, p-Pb, Xe-Xe and Pb-Pb


- Particle ratios (K/ π , p/ π etc.) are consistent for Pb-Pb and Xe-Xe collisions at similar multiplicities
- Smooth evolution of particle ratios from pp → p-Pb → Pb-Pb collisions

No significant energy dependence of the ratios at similar multiplicities

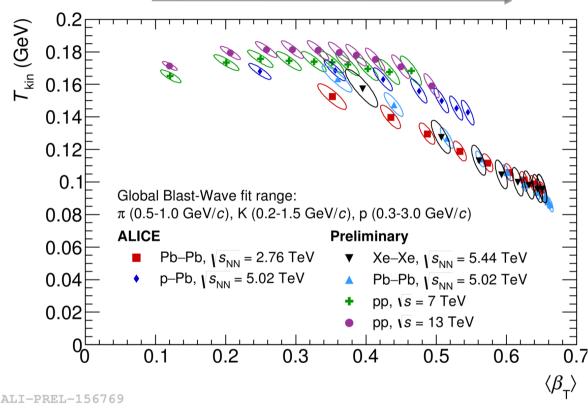

5

Resonance suppression

- Possible weak suppression of Ξ^{*0} w.r.t. pp collisions
- \blacksquare No φ suppression: lives longer, decays outside fireball
- Trends qualitatively decribed by EPOS which includes scattering effects modeled with UrQMD

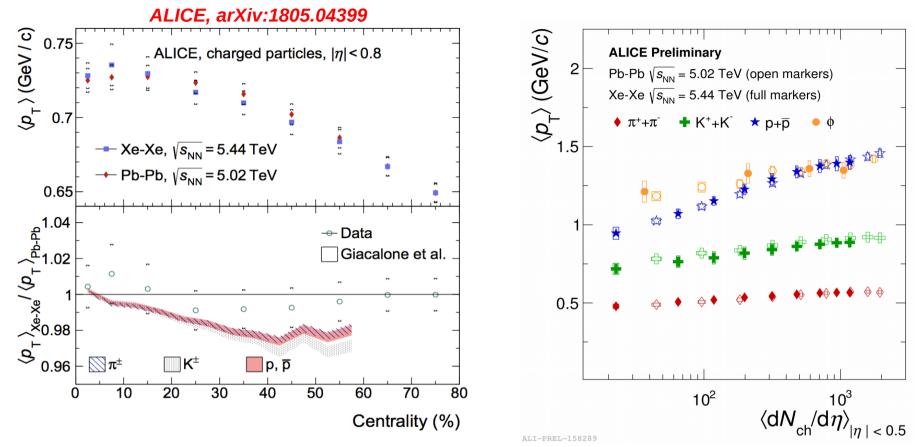
Baryon to meson ratio: Pb-Pb & Xe-Xe

- Baryon to meson ratios are consistent between Pb-Pb and Xe-Xe at similar multiplicities
- Baryon-to-meson ratios for particles of similar masses (m_o ~ m_p) help to study the interplay between hydrodynamics and recombination mechanisms
- p/ ϕ ratio is flat vs. p_{τ} at intermediate momenta in Pb-Pb and Xe-Xe collisions


- Spectra shapes are driven by particle masses:
 - --- consistent with hydrodynamics
 - --- can be accommodated by models with recombination [V. Greco et al., PRC 92 (2015) 054904]

Blast-Wave model fits to ALICE data

Boltzmann-Gibbs Blast-Wave used to quantify radial flow [E. Schnedermann et al., Phys. Rev. C48 (1993) 2462]


- A simplified hydrodynamic model with 3 free fit parameters, T_{kin} : kinetic freeze-out temperature $\langle \beta_T \rangle$: transverse radial flow velocity n: velocity profile to describe particle production from a thermalized source + radial flow boost
- Simultaneous fit to the π , K, p spectra
 - --- $\langle \beta_T \rangle$ increases with multiplicity/centrality in small and large collision systems; T_{kin} reduces with centrality in AA collisions
 - --- In pp and p-Pb, similar evolution of the parameters towards high multiplicity
 - --- At similar multiplicity, $\langle \beta_T \rangle$ is larger for small systems

04/11/2018

Multiplicity / centrality

Mean transverse momentum ($\langle p_{\tau} \rangle$)

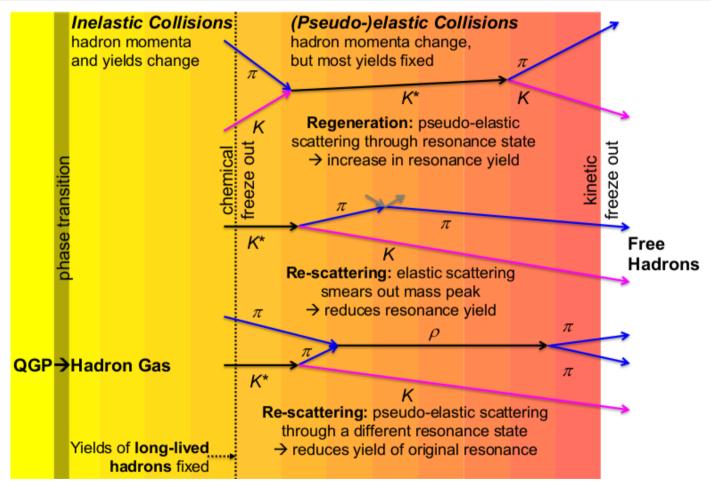
- Hydrodynamics predicts weak dependence on centrality in AA collisions and mass scaling of (p_T), but small (O(3%)) difference between Xe-Xe and Pb-Pb [G. Giacalone et al., PRC 97, 034904 (2018)] --- Measurements in Xe-Xe for charged hadrons show consistency with Pb-Pb
- New data in Xe-Xe for identified hadrons suggest a consistent picture between Xe-Xe and Pb-Pb
- For identified hadrons mass ordering holds at most central AA collisions but breaks down for peripheral AA collisions

$R_{\rm AA}$ Xe-Xe Vs_{NN} = 5.44 TeV, 30-40% $R_{\rm AA}$ ALICE charged particles, $|\eta| < 0.8$ $\langle dN_{ob} / d\eta \rangle = 315 \pm 8$ • Xe-Xe $\sqrt{s_{NN}} = 5.44 \text{ TeV}, 0.5\%$ ↔ Pb-Pb √*s*_{NN} = 5.02 TeV, 40-50% $\langle dN_{ch}/d\eta \rangle = 1167 \pm 24$ $\langle dN_{ch}/d\eta \rangle$ = 318 \pm 12 - → Pb-Pb √s_{NN} = 5.02 TeV, 10-20% **ALICE** Preliminary $\langle dN_{cb}/d\eta \rangle = 1180 \pm 31$ • Xe-Xe $\sqrt{s_{NN}}$ = 5.44 TeV, 0-30% 0.8 0.5 ■ Pb-Pb $\sqrt{s_{_{\rm NN}}}$ = 5.02 TeV, 20-30% $K^{*0}, |y| < 0.5$ 0.6 $R_{\rm XeXe}/R_{\rm PbPb}$ 0.4 0.2 Uncertainties: stat. (bars), syst. (boxes) Ο 2 6 8 12 4 10 $p_{_{T}}$ (GeV/c) 10 10 $p_{_{T}}$ (GeV/c) $p_{_{T}}$ (GeV/c)

 \blacksquare R_{AA} in Pb-Pb and Xe-Xe collisions are consistent at similar multiplicities

ALICE, arXiv:1805.04399

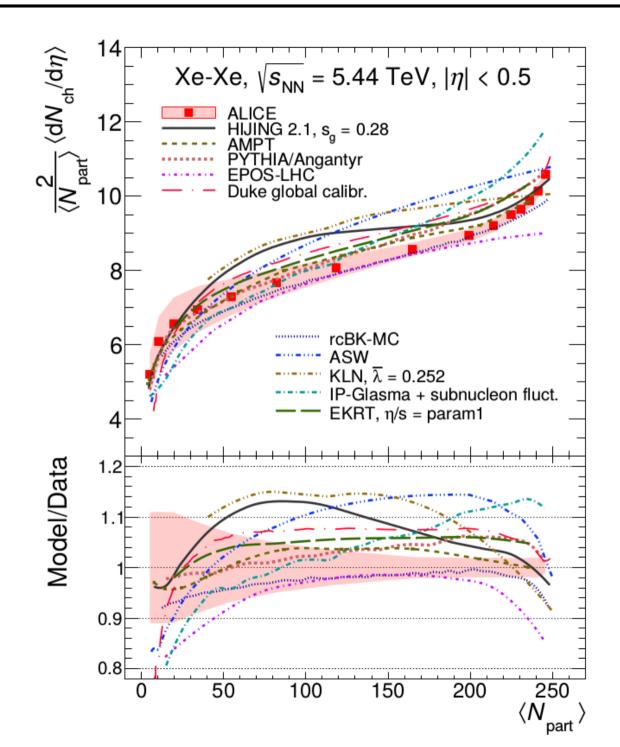
---interplay of system geometry and path length dependence of the parton energy loss


- \blacksquare N_{nart} scaling is violated: confirmed by new measurements in Xe-Xe collisions
- Central collisions of Xe-Xe produce more particles per participant than semi-central collisions of Pb-Pb at similar N_{part}
- Relative production of the light flavour hadrons is independent of collision system and energy and is driven by event multiplicity
- Strangeness enhancement is observed in small and large collision systems, it increases with multiplicity and strangeness content, no energy or collision system dependence
- Rescattering in the hadronic phase significantly reduces reconstructed yields of the short-lived resonances
 - --- Level of suppression is similar in Xe-Xe and Pb-Pb collisions at similar multiplicities
- \blacksquare R_{AA} in Pb-Pb and Xe-Xe collisions are consistent at similar multiplicities

THANK YOU

Back Up

Short-lived resonances


	ρ(770)	K [*] (892)	Λ(1520)	Ξ(1530)	φ(1020)
cτ (fm/c)	1.3	4.2	12.7	21.7	46.2
σ _{rescatt}	$\sigma_{\pi}\sigma_{\pi}$	$\sigma_{\pi}\sigma_{K}$	$\sigma_{\rm K}\sigma_{\rm p}$	$\sigma_{\pi}\sigma_{\Xi}$	$\sigma_K \sigma_K$

Final state yields of resonances depend on:

- ✓ resonance yields at chemical freeze-out
- \checkmark lifetime of the resonance and the hadronic phase
- \checkmark type and scattering cross sections of daughter particles

Charged particle multiplicity : Model comparisson

