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Conventional Mechanism for Quarkonia Suppression

• Matsui and Satz1 proposed J/ψ suppression as a signal for
QGP due to Debye screening of the potential between qq̄.

• If at a temperature TD , the Debye screening length of the
medium becomes less than the radius of quarkonia, then qq̄
may not form bound states.

• In the above picture, suppression of quarkonia occurs when
the temperature of QGP achieves a value higher than TD .

1
T. Matsui and H. Satz, Phys.Lett. B178,416 (1986)
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Adiabatic Approximation

• If the QGP temperature remains below TD , no quarkonia
suppression is expected due to color screening(?) in the
conventional mechanism.

Description of quarkonia through effective potential

• qq̄ potential changes slowly from initial temperature
(V (T = Ti )) to the final temperature (V (Tf )).

• Initial quarkonium state evolves to the state corresponding to
V (Tf ) which is also a bound state for Tf < TD with same
quantum number as initial state, hence no quarkonium
suppression for T < TD . =⇒ Adiabatic
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Evolution of Fireball Created in Heavy Ion Collisions

Figure: Nuclear collision evolution epoch.
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Some Important Observations

• The fireball created in Heavy Ion Collision is rapidly evolving
with time.

• If quarkonia is described in potential model then qq̄ potential
is no-doubt time dependent.

Note:
Matsui and Satz picture considers the static QGP only.

• One need to solve Schrödinger equation for
time-dependent Hamiltonian.
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Adiabaticity Violation: An Important Aspect of Quarkonia
Evolution

Several possible Example of Adiabaticity Violation

• During Thermalisation 1

• Cooling Phase 2

• In presence of initial fluctuation 3

• During Freeze-out

• In presence of transient magnetic field
• Spin Mixing 4

• Spacial Excitation 5

1
Bagchi and Srivastava, Mod.Phys.Lett. A30 (2015) no.32, 1550162

2
Dutta and Borghini, Mod.Phys.Lett. A30 (2015) no.37, 1550205

3
Bagchi et al.,Springer Proc.Phys. 203 (2018) 493-495

4
Dutta et al.,Eur.Phys.J. C78 (2018) no.6, 525

5
Basgchi et al., arXiv:1805.04082
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During Thermalisation
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Figure: Survival Probability p of J/ψ and Υ vs. temperature of medium.
Plots are given upto the temperature TD for J/ψ and Υ .
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Initial Fluctuation in Heavy Ion Collisions

Figure: Initial energy density fluctuation (Phys.Rev. C92 (2015) no.5,
054902).
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Quark Anti-quark Potential in QGP Medium

• In medium Debye screened potential between quark (q) and
anti-quark (q̄) 1

V (r) = −α
r
exp(−mDr) +

σ

mD
(1− exp(−mDr)) (1)

• mD is the Debye mass 2⇒ Static limit (p0 → 0, |~p| = 0) of
the longitudinal part of the gluon self energy πµν

• mD for three flavor case 3

mD = gT
√

1 + Nf /6 (2)

1
H. Satz, J. Phys. Conf. Ser. 455, 012045 (2013).

2
E. Braaten and A. Nieto, Phys. Rev. Lett. 73, 2402 (1994)

3
F. Karsch, M.T. Mehr, and H. Satz, Z. Phys. C 37, 617 (1988).
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Quark Anti-quark Potential in Presence of Magnetic Field

• The effect of magnetic field in the fermion self energy is
incorporated through the fermion propagator.

• In the strong field limit:

S0(k) = i
m + γ · k‖
k2
‖ −m2

(1− iγ1γ2)e
−k2
⊥

|qf B| (3)

• B is along Z-axis.

• The self energy is calculated by using thermal propagator in
imaginary time formalism.

• Debye mass is then obtained as1:

m2
D = g ′

2
T 2 +

g2

4π2T

∑
f

| qf B |
∫ ∞

0
dpz

eβ
√

p2
z+m2

f(
1 + eβ

√
p2
z+m2

f

)2

(4)
1

Hasan et al., arXiv:1802.06874
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Quark Anti-quark Potential in Presence of Magnetic Field
Continued....

• First term is the contribution from the gluon loops and this is
solely dependent on temperature

• g ′2 = 4πα′s(T ) where α′s(T ) is the usual temperature
dependent running coupling where the renormalization scale is
taken as 2πT

•
α′s(T ) =

2π(
11− 2

3Nf

)
ln
(

Λ
ΛQCD

) (5)

Where Λ = 2πT and ΛQCD ∼ 200 MeV
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Quark Anti-quark Potential in Presence of Magnetic Field
Continued....

• Second term is the contribution from the fermion loop and
this term strongly depends on magnetic field.

• g2 = 4πα
‖
s (kz , qf B), where α

‖
s (kz , qf B) is the magnetic field

dependent coupling and doesn’t depend on temperature. 1 2

•

α
‖
s (kz , qf B) =

1

α0
s (µ0)−1 + 11Nc

12π ln
(
k2
z +M2

B

µ2
0

)
+ 1

3π

∑
f
qf B
σ

(6)
where, α0

s (µ0) = 12π

11Nc ln

(
µ2

0
+M2

B
Λ2
V

)
and, MB = 1 GeV, σ = 0.18 GeV 2, µ0 = 1.1 GeV,
ΛV = 0.385 GeV.

1
Andreichikov et al., Phys. Rev. Lett. 110, 162002 (2013)

2
Ferrer et al., Phys. Rev. D91, 054006 (2015)
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Evolution of Magnetic Field in Non Central Collisions

• In Heavy Ion Collisions there are certain possibilities of
production of huge magnetic field for non-central collision.

• The magnetic field will last for only few fm/c time1.

Figure: Magnetic field for σe = 5.8MeV , z = 0.2fm, t0 = 0.2fm.
Solid, dashed, and dotted lines stand for B, Binit and Bval ,
γ = 2000.

• σe (Electrical conductivity)= 0, for t < t0(QGP formation
time)

1
Kirill Tuchin,Phys. Rev. C 93, 014905 (2016)
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Time-Dependent Potential for Studying Quarkonia
Wave-Function Evolution

• Magnetic Field is Transient in Nature

• Decays to order of magnitude within few fm/c time.

• The evolution of the wave function, thus, cannot be taken to
be adiabatic and it should be treated in terms of a time
dependent perturbation theory (is one of the tool).

• Survival probability of quarkonia should be calculated under
this perturbation.
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Results

• We have calculated dissociation energy of J/ψ (T = 1.7Tc)
and Υ(1S)(T = 3.0Tc) for different values of magnetic field 1

• In the strong field limit, the effect of the temperature is
suppressed.
⇒ strongly bound quarkonia

1
F. Karsch, M.T. Mehr, and H. Satz, Z. Phys. C 37, 617 (1988).
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Results
Dissociation Energy
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Figure: Magnetic field vs dissociation energy for charmonia.
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Results

• Considering magnetic field starting from 15m2
π, decays with

time like
B(t) = B0

(1.0+0.706896(t+6.23841t2−1.39341t3+0.108236t4))

• The temperature starting from 1.7Tc for J/ψ (3.0 Tc for
Υ(1S)) decays like

T (t) = T0

(
τ0
τ0+t

) 1
3

• Then we have calculated the transition probability of
quarkonia from its ground states to continuum states using
1st order perturbation theory.
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Results
Dissociation Probability
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Figure: Magnetic field vs dissociation probability.
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Summary

• The presence of strong magnetic field makes quarkonia
strongly bound .
⇒ more or less true for all available potential present in the
community still now

• Even non-adiabatic evolution can not dissociate Υ(1S) at an
initial temperature T = 3Tc .
⇒ contradictory with experimental results

• Possibilities:
1: There will be no(/very weak) magnetic field present when
medium formed
2: Behavior of quarkonia may be drastically opposite in
presence of weak(/intermediate) magnetic field in comparison
with the presence of strong field.
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Thank You !
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