Chiral kinetic theory and magnetic effect

Yoshimasa Hidaka (RIKEN)

What is chiral kinetic theory?

 Relativistic Boltzmann equation$$
\left(v^{\mu} \partial_{\mu}+v^{\mu} F_{\nu \mu} \partial_{p_{\nu}}\right) f=C[f]
$$

widely used in plasma physics
Transport coefficient: shear viscosity, etc..

What is chiral kinetic theory?

 Relativistic Boltzmann equation$$
\left(v^{\mu} \partial_{\mu}+v^{\mu} F_{\nu \mu} \partial_{p_{\nu}}\right) f=C[f]
$$

widely used in plasma physics
Transport coefficient: shear viscosity, etc..

Relativistic Boltzmann equation with quantum anomaly?

Anomaly matching and effective theory

If UV theory has an anomaly, IR theory has the same anomaly.

Anomaly matching and effective theory

If UV theory has an anomaly,
't Hooft ('80)
IR theory has the same anomaly. UV theory QCD
Chiral anomaly: $\partial_{\mu} J_{5}^{3 \mu}=C \boldsymbol{E} \cdot \boldsymbol{B}$

Anomaly matching and effective theory

If UV theory has an anomaly,
't Hooft ('80)
IR theory has the same anomaly. UV theory

QCD
Chiral anomaly: $\partial_{\mu} j_{5}^{3 \mu}=C \boldsymbol{E} \cdot \boldsymbol{B}$
Effective theory

Anomaly matching and effective theory

 If UV theory has an anomaly,
Chiral anomaly: $\partial_{\mu} j_{5}^{3 \mu}=C E \cdot \boldsymbol{B}$

Effective theory

Vacuum

Chiral perturbation theory

Wess-Zumino term

$$
\pi^{0} \rightarrow 2 \gamma
$$

Anomaly matching and effective theory

 If UV theory has an anomaly,$$
\text { Chiral anomaly: } \partial_{\mu} J_{5}^{3 \mu}=C E \cdot \boldsymbol{B}
$$

Effective theory

Vacuum

Chiral perturbation theory

Wess-Zumino term
$\pi^{0} \rightarrow 2 \gamma$

Manybody systems
Hydrodynamics

Anomalous transport
Chiral magnetic effect (CME) Equilibrium: CME, CVE Chiral vortical effect (CVE)

Kinetic theory

Berry curvature Nonequilibrium: ?

Chiral Kinetic theory

Son, Yamamoto ('12) Stephanov, Yin ('12)
cf. Chang and Niu ('95)

Hamiltonian $H=\boldsymbol{\sigma} \cdot \boldsymbol{p}$

Chiral Kinetic theory
 Son, Yamamoto ('12) Stephanov, Yin ('12)
 cf. Chang and Niu ('95)

Hamiltonian $H=\boldsymbol{\sigma} \cdot \boldsymbol{p}$

Chiral Kinetic theory
 Son, Yamamoto ('12) Stephanov, Yin ('12)
 cf. Chang and Niu ('95)

Hamiltonian $H=\boldsymbol{\sigma} \cdot \boldsymbol{p}$

When \boldsymbol{p} is time independent:
Wave function

$$
\psi(t)=e^{-i|p| t} u_{+}
$$

Chiral Kinetic theory

Son, Yamamoto ('12) Stephanov, Yin ('12) cf. Chang and Niu ('95)

Hamiltonian $H=\boldsymbol{\sigma} \cdot \boldsymbol{p}$

When p is weakly time dependent:
Wave function

$\psi(t) \approx e^{-i|p| t}$

 u_{+}Berry connection:
Berry('84)

Chiral Kinetic theory

Son, Yamamoto ('12) Stephanov, Yin ('12)
cf. Chang and Niu ('95)
$S=\int d t\left(\dot{\boldsymbol{x}} \cdot \boldsymbol{p}+\dot{\boldsymbol{x}} \cdot \boldsymbol{A}-|\boldsymbol{p}|-A_{0}-\dot{p} \cdot a\right)$ Action with Berry connection: $a:=-u_{+}^{\dagger} i \nabla_{p} u_{+}$

Chiral Kinetic theory

Son, Yamamoto ('12) Stephanov, Yin ('12)
cf. Chang and Niu ('95)
$S=\int d t\left(\dot{\boldsymbol{x}} \cdot \boldsymbol{p}+\dot{\boldsymbol{x}} \cdot \boldsymbol{A}-|\boldsymbol{p}|-A_{0}-\dot{p} \cdot a\right)$ Action with Berry connection: $a:=-u_{+}^{\dagger} i \nabla_{p} u_{+}$

Classical EOM $\dot{\boldsymbol{x}}=\hat{\boldsymbol{p}}+\dot{p} \times \Omega$

$$
\begin{aligned}
\dot{p} & =\dot{\boldsymbol{x}} \times \boldsymbol{B}+\boldsymbol{E} \\
& =\nabla_{p} \times a=\frac{\hat{p}}{2 p^{2}}
\end{aligned}
$$

Chiral Kinetic theory

Son, Yamamoto ('12) Stephanov, Yin ('12)

Chiral kinetic equation (CKE)

$\left(\partial_{t}+\dot{x} \cdot \nabla_{x}+\dot{p} \cdot \nabla_{p}\right) f=0$

Chiral Kinetic theory

Son, Yamamoto ('12) Stephanov, Yin ('12)

Chiral kinetic equation (CKE)

$\left(\partial_{t}+\dot{x} \cdot \nabla_{x}+\dot{p} \cdot \nabla_{p}\right) f=0$ Current

$$
j=\int_{p} f \hat{p}+E \times \int_{p} f \Omega+\boldsymbol{B} \int_{p} f \hat{p} .
$$

Chiral Kinetic theory

Son, Yamamoto ('12) Stephanov, Yin ('12)

Chiral kinetic equation (CKE)

$\left(\partial_{t}+\dot{x} \cdot \nabla_{x}+\dot{p} \cdot \nabla_{p}\right) f=0$

Current

$$
j=\int_{p} f \hat{p}+E \times \int_{p} f \Omega+B \int_{p} f \hat{p} \cdot \Omega
$$

Hall effect Chiral magnetic effect

Chiral Kinetic theory

Son, Yamamoto ('12) Stephanov, Yin ('12)

Chiral kinetic equation (CKE)

$\left(\partial_{t}+\dot{x} \cdot \nabla_{x}+\dot{p} \cdot \nabla_{p}\right) f=0$
Current

$$
j=\int_{p} f \hat{p}+E \times \int_{p} f \Omega+B \int_{p} f \hat{p}
$$

Hall effect Chiral magnetic effect

Anomaly

$$
\partial_{\mu} j^{\mu}=\frac{1}{4 \pi^{2}} \boldsymbol{E} \cdot \boldsymbol{B}
$$

Lorentz covariance?
$S=\int d t\left(\dot{x} \cdot p+\dot{x} \cdot A-|p|-A_{0}-\dot{p} \cdot a\right)$
The action looks not Lorentz invariant.

Lorentz covariance?
$s=\int d\left(k \dot{c} \cdot p+\dot{k} \cdot A-|p|-A_{0}-\dot{p} \cdot a\right)$
The action looks not Lorentz invariant.

1) Energy shift: $|p| \rightarrow|p|(1-\Omega \cdot B)$

Son, Yamamoto ('13)

Lorentz covariance?
 $s=\int d\left(\vec{k} \cdot p+\dot{x} \cdot A-|p|-A_{0}-\dot{p} \cdot a\right)$

The action looks not Lorentz invariant.

1) Energy shift: $|\boldsymbol{p}| \rightarrow|\boldsymbol{p}|(1-\Omega \cdot B)$

Son, Yamamoto ('13)
2) Modified Lorentz transform

Chen, Son, Stephanov, Yee, Yin ('14)
$\delta \boldsymbol{x}=\boldsymbol{\beta} t+|p| \beta \times \Omega \quad \delta \boldsymbol{p}=\beta \epsilon$

Several approaches

Hamiltonian formalism

Son, Yamamoto ('12)

Semi-classical path integral

Stephanov, Yin ('12)
World line formalism: Mueller, Venugopalan ('17) ('18)

Field theoretical approach

High density effective theory: Son, Yamamoto ('13)
On-shell effective theory: Manuel,Torres-Rincon ('13) ('14)
Carignano, Manuel,Torres-Rincon ('18)
Wigner function: Gao,Liang,Pu,Wang,Wang ('12), Chen, Pu, Wang, Wang ('13)
Wu, Hou, Ren('17)
Huang, Shi, Jiang, Liao, Zhuang('18)
CVE: Gao, Pang, Wang ('18)
Kadanoff-Baym: YH, Shi Pu, Yang ('16) ('17), YH, Yang ('18)

QFT approach

Propagator (Wigner function)

$$
\begin{aligned}
& S^{<}(p, X)=\int d^{4} s e^{i s \cdot p}\left\langle\psi^{\dagger}(y) \psi(x)\right\rangle U(x, y) \\
& S^{>}(p, X)=\int d^{4} s e^{i s \cdot p}\left\langle\psi(x) \psi^{\dagger}(y)\right\rangle U(x, y)
\end{aligned}
$$ where $X=\frac{x+y}{2} \quad s=x-y$

QFT approach

Propagator (Wigner function)

$$
\begin{aligned}
& S^{<}(p, X)=\int d^{4} s e^{i s \cdot p}\left\langle\psi^{\dagger}(y) \psi(x)\right\rangle U(x, y) \\
& S^{>}(p, X)=\int d^{4} s e^{i s \cdot p}\left\langle\psi(x) \psi^{\dagger}(y)\right\rangle U(x, y)
\end{aligned}
$$ where $x=\frac{x+y}{2} \quad s=x-y$

EOM (Schwinger-Dyson equation)

$$
\sigma^{\mu}\left(p_{\mu}-A_{\mu}\right) \star S^{<}=\frac{-i \hbar}{2}\left(\Sigma^{<} \star S^{>}-\Sigma^{>} \star S^{<}\right)
$$

EOM Up to order hbar

$$
\sigma^{\mu}\left(p_{\mu}+\frac{i \hbar}{2} \Delta_{\mu}\right) S^{<}=\frac{-i \hbar}{2}\left(\Sigma^{<} S^{>}-\Sigma^{>} S^{<}\right)
$$

$$
\text { where } \Delta_{\mu}=\partial_{\mu}+F_{\nu \mu} \frac{\partial}{\partial p_{\nu}}
$$

EOM Up to order hbar

$$
\sigma^{\mu}\left(p_{\mu}+\frac{i \hbar}{2} \Delta_{\mu}\right) S^{<}=\frac{-i \hbar}{2}\left(\Sigma^{<} S^{>}-\Sigma^{>} S^{<}\right)
$$

Chiral kinetic equation (CKE)

$\Delta_{\mu} S^{<\mu}=\Sigma_{\mu}^{<} S^{>\mu}-\Sigma_{\mu}^{>} S^{<\mu}$ where $S^{<\mu}=\frac{1}{2} \operatorname{tro} \sigma^{\mu} S^{<}$

EOM Up to order hbar

$$
\sigma^{\mu}\left(p_{\mu}+\frac{i \hbar}{2} \Delta_{\mu}\right) S^{<}=\frac{-i \hbar}{2}\left(\Sigma^{<} S^{>}-\Sigma^{>} S^{<}\right)
$$

Chiral kinetic equation (CKE)

$\Delta_{\mu} S^{<\mu}=\Sigma_{\mu}^{<} S^{>\mu}-\Sigma_{\mu}^{>} S^{<\mu}$ where $S^{<\mu}=\frac{1}{2} \operatorname{tr} \sigma^{\mu} S^{<}$
$S^{<\mu}=2 \pi \epsilon(p \cdot n)\left[\delta\left(p^{2}\right)\left(p^{\mu}+\hbar S_{n}^{\mu \nu} \mathscr{D}_{\nu}\right)+p_{\nu} \tilde{F}^{\mu \nu} \delta^{\prime}\left(p^{2}\right)\right] f$
YH, Shi Pu, Yang ('16) ('17)
spin: $S_{n}^{\mu \nu}=\frac{1}{2} \epsilon^{\mu \nu \alpha \beta} \frac{p_{\alpha} n_{\beta}}{p \cdot n} \quad \mathscr{D}_{\mu} f=\Delta_{\mu} f+\Sigma_{\mu}^{<} f-\Sigma_{\mu}^{>} \bar{f}$

Lorentz invariance

Chen, Son, Stephanov ('15), YH. Pu, Yang ('16)
Talk by Jian-Hua Gao (Parallel II.1)

$$
\begin{gathered}
S^{<\mu}=2 \pi \epsilon(p \cdot n)\left[\delta\left(p^{2}\right)\left(p^{\mu}+\hbar S_{n}^{\mu \nu} \mathscr{D}_{\nu}\right)+\hbar p_{\nu} \tilde{F}_{\alpha \beta}^{\mu \nu} \delta^{\prime}\left(p^{2}\right)\right] f \\
S^{<\mu} \text { is Lorentz covariant }
\end{gathered}
$$

Lorentz invariance

Chen, Son, Stephanov ('15), YH. Pu, Yang ('16)
Talk by Jian-Hua Gao (Parallel II.1)

$$
S^{<\mu}=2 \pi \epsilon(p \cdot n)\left[\delta\left(p^{2}\right)\left(p^{\mu}+\hbar S_{n}^{\mu \nu} \mathscr{D}_{\nu}\right)+\hbar p_{\nu} \tilde{F}_{\alpha \beta}^{\mu \nu} \delta^{\prime}\left(p^{2}\right)\right] f
$$

$S^{<\mu}$ is Lorentz covariant

$$
\begin{aligned}
& f \text { is not Lorentz scalar } \\
& f \rightarrow f+\frac{\epsilon^{\nu \mu \alpha \beta} p_{\alpha} n_{\beta}^{\prime} n_{\mu}}{2(p \cdot n)\left(p \cdot n^{\prime}\right)} \mathscr{D}_{\nu} f
\end{aligned}
$$

Application

(local) Equilibrium

$$
\text { Current: } J^{\mu}=2 \int \frac{d^{4} p}{(2 \pi)^{4}} S^{<\mu}(p, X)
$$

$$
\begin{array}{r}
J=n u+\sigma_{B} \boldsymbol{B}+\sigma_{\omega} \boldsymbol{\sigma} \boldsymbol{\omega} \\
\text { CVE }
\end{array}
$$

Dissipative current

CKE with relaxation time approximation

Gorbar, Shovkovy, Vilchinskii, Rudenok, Boyarsky, Ruchayskiy ('16)

Chen, Ishii, Pu, Yamamoto ('16)
YH, Pu, Yang ('17)

$$
\begin{aligned}
& \nabla \mu, \nabla T \text { correction } \\
& \delta J=C_{1} E \times \nabla \mu+C_{2} E \times \nabla T+C_{3} \nabla \mu \times \nabla T \\
& C_{i} \sim \tau_{R}
\end{aligned}
$$

Dissipative current

CKE with relaxation time approximation

Gorbar, Shovkovy, Vilchinskii, Rudenok, Boyarsky, Ruchayskiy ('16)

Chen, Ishii, Pu, Yamamoto ('16)
YH, Pu, Yang ('17)

$$
\begin{aligned}
& \quad \nabla \mu, \nabla T \text { correction } \\
& \delta J=C_{1} \boldsymbol{E} \times \nabla \mu+C_{2} \boldsymbol{E} \times \nabla T+C_{3} \nabla \mu \times \nabla T \\
& C_{i} \sim \tau_{R} \\
& \\
& \text { low-T } \quad \text { OE } \\
&
\end{aligned}
$$

Dissipative current

CKE with relaxation time approximation

Gorbar, Shovkovy, Vilchinskii, Rudenok, Boyarsky, Ruchayskiy ('16)

Chen, Ishii, Pu, Yamamoto ('16)
YH, Pu, Yang ('17)

$$
\begin{aligned}
& \nabla \mu, \nabla T \text { correction } \\
& \delta J=C_{1} \boldsymbol{E} \times \nabla \mu+C_{2} \boldsymbol{E} \times \nabla T+C_{3} \nabla \mu \times \nabla T \\
& \quad C_{i} \sim \tau_{R} \\
& \\
& \text { low-T }
\end{aligned}
$$

Dissipative current

YH, Yang ('18)
Shear and bulk correction

$$
\begin{aligned}
\delta J^{i}= & C_{4} \pi^{i j} B_{j}+C_{5} \pi^{i j} \omega_{j} \\
& +C_{6}(\nabla \cdot \boldsymbol{u}) B^{i}+C_{7}(\nabla \cdot \boldsymbol{u}) \omega^{i}
\end{aligned}
$$

Dissipative current

YH, Yang ('18)

Shear and bulk correction

$$
\delta J^{i}=C_{4} \pi^{i j} B_{j}+C_{5} \pi^{i j} \omega_{j}
$$

$$
+C_{6}(\nabla \cdot \boldsymbol{u}) \boldsymbol{B}^{i}+C_{7}(\nabla \cdot \boldsymbol{u}) \omega^{i}
$$

Dissipative current

YH, Yang ('18)

Shear and bulk correction

$$
\begin{aligned}
\delta J^{i}= & C_{4} \pi^{i j} B_{j}+C_{5} \pi^{i j} \omega_{j} \\
& +C_{6}(\nabla \cdot \boldsymbol{u}) B^{i}+C_{7}(\nabla \cdot \boldsymbol{u}) \omega^{i} \\
&
\end{aligned}
$$

Out of equilibrium transport

 Kharzeev, Stephanov,Yee('17)
CKE with relaxation time approximation

ω dependence of CME $\sigma(\omega)=\sigma_{0}\left(1-\frac{2}{3} \frac{\omega}{\omega+i \tau_{R}^{-1}}\right)$
Kharzeev, Stephanov,Yee Phys. Rev. D 95, 051901 (2017)
$\frac{\sigma(\omega)}{\sigma_{0}}$
solid: CKE dashed: AdS/CFT

Dilepton production

Gongyo, YH, Tachibana ('18)

QGP

Lepton pair

Photon polarization funciton

$$
\Pi^{<\mu \nu}(X, q)=\int d^{4} s e^{i q \cdot s}\left\langle j^{\nu}(X-s / 2) j^{\mu}(X+s / 2)\right\rangle
$$

Dilepton production rate

$$
\frac{d \Gamma}{d^{4} q}=-\frac{\alpha}{24 \pi^{4}} \Pi_{\mu}^{<\mu}(q, X)
$$

Di-lepton production

Gongyo, YH, Tachibana('18)

$$
\begin{array}{r}
\frac{d \Gamma}{d^{4} q}=\frac{d \Gamma_{0}}{d^{4} q}+\frac{d \Gamma_{\omega}}{d^{4} q} \text { with } \frac{d \Gamma_{\omega}}{d^{4} q}=\left(\boldsymbol{\Omega}_{\gamma} \cdot \omega\right) C(q) \\
\Omega_{\gamma}=\frac{\hat{q}}{|q|^{2}}
\end{array}
$$

Puzzle?

CKE from on-shell effective theory
Carignano, Manuel, Torres-Rincon ('18)

$$
\left(\Delta_{0}+(1+\boldsymbol{B} \cdot \boldsymbol{\Omega}) \hat{\boldsymbol{q}}^{i} \Delta_{i}+\left(\frac{1}{2} \epsilon^{i j k} E^{j} \Omega^{k}-\frac{1}{4} B_{\perp}^{i}\right) \Delta_{i}\right) f=0
$$

reproduces consistent anomaly $\partial_{\mu} j_{5}^{\mu}=\frac{1}{3} \frac{1}{2 \pi^{2}} E \cdot B$
CKE by Son, Yamamoto ('12), YH, Pu, Yang ('17)
$\left(\Delta_{0}+(1+\boldsymbol{B} \cdot \Omega) \hat{q}^{i} \Delta_{i}+\epsilon^{i j k} E^{j} \Omega^{k} \Delta_{i}\right) f=0$ where $\Delta_{\mu}=\partial_{\mu}+F_{\nu \mu} \frac{\partial}{\partial p_{\nu}}$ reproduces covariant anomaly

$$
\partial_{\mu} j_{5}^{\mu}=\frac{1}{2 \pi^{2}} E \cdot B
$$

Summary Chiral kinetic theory: Effective theory reproducing chiral anomaly

Novel dissipative anomalous transports are found. Application to HIC and cond-mat
Quarks have mass. What is mass correction to CKE?
Mass correction to CVE cf. Flachi, Fukushima ('17), Lin, Yang ('18)

$$
j_{5}^{\mu}=\left(\frac{T^{2}}{6}-\frac{m^{2}}{4 \pi^{2}}\right) \omega^{\mu}
$$

Analysis with collisions without relaxation time approximation

