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What is chiral kinetic theory?
Relativistic Boltzmann equation

Relativistic Boltzmann equation 
with quantum anomaly?

(vµ@µ + vµF⌫µ@p⌫ )f = C[f ]

Transport coefficient: shear viscosity, etc..
widely used in plasma physics
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Anomaly matching and effective theory
If UV theory has an anomaly, 
IR theory has the same anomaly.

Manybody systems
Hydrodynamics

Anomalous transport

Chiral magnetic effect (CME) 
Chiral vortical effect (CVE)

Berry curvature

Kinetic  theory

Equilibrium: CME, CVE 
Nonequilibrium: ? 
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Chiral perturbation  
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Wess-Zumino term
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cf. Chang and Niu (’95)

H = σ ⋅ pHamiltonian
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Stephanov, Yin (’12) 

Chiral Kinetic theory
Son, Yamamoto (’12)

cf. Chang and Niu (’95)

ψ(t) ≈ e−i|p|t−i ∫t dt′�a⋅ ·pu+

Hu± = ± |p |u±

H = σ ⋅ pHamiltonianHamiltonian

When p is weakly time dependent:

Berry(’84)
Berry connection: a := − u†

+i∇pu+

Wave function

http://link.aps.org/doi/10.1103/PhysRevLett.109.162001
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Stephanov, Yin (’12) 

Action with Berry connection:

S = ∫ dt( ·x ⋅ p + ·x ⋅ A − |p | − A0− ·p ⋅ a)

Classical EOM ·x = p̂ + ·p × Ω
·p = ·x × B + E

Ω = ∇p × a =
p̂

2p2

Chiral Kinetic theory
Son, Yamamoto (’12)

cf. Chang and Niu (’95)

a := − u†
+i∇pu+

http://link.aps.org/doi/10.1103/PhysRevLett.109.162001


Chiral kinetic equation (CKE)
(∂t + ·x ⋅ ∇x + ·p ⋅ ∇p)f = 0

Stephanov, Yin (’12) 

Chiral Kinetic theory
Son, Yamamoto (’12)

http://link.aps.org/doi/10.1103/PhysRevLett.109.162001
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Chiral magnetic effectHall effect

Current
j = ∫p

f p̂ + E × ∫p
fΩ+B∫p

f p̂ ⋅ Ω

Anomaly 
∂μ jμ =

1
4π2

E ⋅ B

Chiral kinetic equation (CKE)
(∂t + ·x ⋅ ∇x + ·p ⋅ ∇p)f = 0

Stephanov, Yin (’12) 

Chiral Kinetic theory
Son, Yamamoto (’12)

http://link.aps.org/doi/10.1103/PhysRevLett.109.162001
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Lorentz covariance?

The action looks not Lorentz invariant.

S = ∫ dt( ·x ⋅ p + ·x ⋅ A − | p | − A0 − ·p ⋅ a)

1) Energy shift:
Son, Yamamoto (’13)

| p | → | p | (1−Ω ⋅ B)

2)Modified Lorentz transform
Chen, Son, Stephanov, Yee, Yin (’14)

δx = βt+ |p |β × Ω δp = βϵ+ |p | (β × Ω) × B



Semi-classical path integral

Field theoretical approach

Several approaches

 

Son, Yamamoto (’13)

Stephanov, Yin (’12)

  Kadanoff-Baym:

World line formalism: Mueller, Venugopalan (’17) (’18)

Wigner function:

CVE: Gao, Pang, Wang (’18)

High density effective theory:

Huang, Shi, Jiang, Liao, Zhuang(’18)
Wu, Hou, Ren(’17)

Hamiltonian formalism
Son, Yamamoto (’12)

Gao,Liang,Pu,Wang,Wang (’12), Chen, Pu,  Wang, Wang (’13)

On-shell effective theory: 
Carignano, Manuel,Torres-Rincon (’18)
Manuel,Torres-Rincon (’13) (’14)

YH,  Shi Pu, Yang (’16) (’17), YH, Yang (’18)

http://link.aps.org/doi/10.1103/PhysRevLett.109.181602


QFT approach
Propagator (Wigner function)

S<(p, X) = ∫ d4seis⋅p⟨ψ†(y)ψ(x)⟩U(x, y)

S>(p, X) = ∫ d4seis⋅p⟨ψ(x)ψ†(y)⟩U(x, y)
X =

x + y
2

s = x − ywhere



QFT approach
Propagator (Wigner function)

S<(p, X) = ∫ d4seis⋅p⟨ψ†(y)ψ(x)⟩U(x, y)

S>(p, X) = ∫ d4seis⋅p⟨ψ(x)ψ†(y)⟩U(x, y)

EOM (Schwinger-Dyson equation)

σμ(pμ − Aμ) ⋆ S< =
−iℏ

2
(Σ< ⋆ S> − Σ> ⋆ S<)

= +

X =
x + y

2
s = x − ywhere
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EOM Up to order hbar

where Δμ = ∂μ + Fνμ
∂

∂pν

σμ(pμ +
iℏ
2

Δμ)S< =
−iℏ

2
(Σ<S> − Σ>S<)

Chiral kinetic equation (CKE)
ΔμS<μ = Σ<

μ S>μ − Σ>
μ S<μ S<μ =

1
2

trσμS<where

S<μ = 2πϵ(p ⋅ n)[δ(p2)(pμ+ℏSμν
n 𝒟ν)+ℏpνF̃μνδ′�(p2)]f

Sμν
n =

1
2

ϵμναβ
pαnβ

p ⋅ n
𝒟μ f = Δμ f + Σ<

μ f − Σ>
μ f̄spin:

YH,  Shi Pu, Yang (’16) (’17)

Talk by Amping Huang (Parallel II.3)



Lorentz invariance
Chen, Son, Stephanov (’15), YH. Pu, Yang (’16)

Talk by Jian-Hua Gao (Parallel II.1)

S<μ = 2πϵ(p ⋅ n)[δ(p2)(pμ+ℏSμν
n 𝒟ν)+ℏpνF̃

μν
αβδ′�(p2)]f

is Lorentz covariant S<μ



Lorentz invariance
Chen, Son, Stephanov (’15), YH. Pu, Yang (’16)

Talk by Jian-Hua Gao (Parallel II.1)

S<μ = 2πϵ(p ⋅ n)[δ(p2)(pμ+ℏSμν
n 𝒟ν)+ℏpνF̃

μν
αβδ′�(p2)]f

is Lorentz covariant S<μ

is not Lorentz scalarf

f → f+ℏ
ϵνμαβpαn′�βnμ

2(p ⋅ n)(p ⋅ n′�)
𝒟ν f



Application



(local) Equilibrium
Jμ = 2∫

d4p
(2π)4

S<μ(p, X)Current:

J = nu + σBB + σωω
CME CVE



Dissipative current
CKE with relaxation time approximation

Gorbar, Shovkovy, Vilchinskii, Rudenok, Boyarsky, Ruchayskiy (’16)
Chen, Ishii, Pu, Yamamoto (’16)

∇μ, ∇T correction

Ci ∼ τR

δJ = C1E × ∇μ + C2E × ∇T + C3 ∇μ × ∇T

YH, Pu, Yang ('17)
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high-Tlow-T

E◉
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Ci ∼ τR
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Dissipative current
YH, Yang ('18)

δJi = C4πijBj + C5πijωj

Shear and bulk correction

+C6(∇ ⋅ u)Bi + C7(∇ ⋅ u)ωi
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Dissipative current

u

B

YH, Yang ('18)

δJi = C4πijBj + C5πijωj

J
J

Shear and bulk correction

+C6(∇ ⋅ u)Bi + C7(∇ ⋅ u)ωi



Out of equilibrium transport
Kharzeev, Stephanov,Yee(’17)

Phys. Rev. D 95, 051901 (2017)

It is interesting to consider what the results would look like
in the absence of Berry curvature (which can be seen by
keeping only the terms with the g-factor). The equilibrium
CME is absent in this case, while the CME in the free-
streaming regime is − g

3 σ0B. Interestingly, the existence of
CME in the free-streaming regime does not necessarily
require the Berry curvature, but its value would be smaller
byσ0B from theonewith theBerry curvature. The importance
of distinguishing the effects of the Berry curvature and of the
magnetic moment has been also emphasized in the context of
the gyrotropic effect [33–35]. We emphasize again that the
equilibriumCME in the hydrodynamic regime, J ¼ σ0B, is a
consequence of the Berry curvature, independent of the
physics of the spin magnetic moment (g-factor).

V. INTERPOLATING HYDRODYNAMIC REGIME
AND FREE-STREAMING REGIME

In interacting systems, such as QCD and Dirac/Weyl
semimetals in a weakly coupled regime, the transition
between the hydrodynamic regime and the free-streaming
regime should be well approximated by a function

σðωÞ ¼ σ0

!
1 − g

3

ω
ω þ iτ−1R

"
; ð12Þ

with a single effective parameter τR with a dimension of
time. One way to fix this parameter is to consider a small
frequency expansion, σðωÞ ¼ σ0 − iξ5ω þ Oðω2Þ with
ξ5 ¼ − g

3 σ0τR, where ξ5 is one of the parity-odd transport
coefficients in second order hydrodynamics, J ¼ σ0B þ
ξ5 dB

dt [20]. In two-flavor QCD, it has been computed in
leading-log accuracy of the coupling constant αs ≡ g2s=ð4πÞ
by resumming leading pinch singularities [36], ξ5≈
− 0.5

α2s logð1=αsÞ
σ0
T , which gives (with g ¼ 2)

τ−1R ≈ 1.3α2s logð1=αsÞTð2-flavor QCDÞ: ð13Þ
We also mention that the imaginary part of σðωÞ

is proportional to the parity-odd spectral density [36,37]
ρoddðkÞ ¼ −2ImσðkÞ that appears in the thermal fluctuation-
dissipation relation of the charge current hJiðkÞJjð−kÞi∼
ð12 þ nBðωÞÞiϵijlklρoddðkÞ. As can be seen from (12) the
ρoddðωÞ is proportional to the g-factor—this provides an
intuitive explanation of why ρoddðkÞ, though it arises from the
same triangle diagram, is sensitive to the microscopic details
of dynamics that are not constrained by the chiral anomaly.

VI. TOWARDS A FULL QUANTUM
DESCRIPTION OF AC CHIRAL MAGNETIC

CONDUCTIVITY IN QCD

To describe the AC CME conductivity σðωÞ, we have to
keep in mind that the kinetic theory is valid only in the
classical regime of quasiparticles, ω ≪ T, where T charac-
terizes the typical energy-momentum of thermal quasipar-
ticles. For ω ≫ T the probing scale is smaller than the

Compton length of quasiparticles, and the response function
is governed by quantum dynamics. This quantum response
is dominated by a sum of one-particle responses of quasi-
particles without collisions [since the scale of collisions is
well separated from T; see (13)], and it is reliably captured
by a 1-loop diagrammatic computation [15].
This suggests a smooth interpolation of the previous

kinetic theory result (12) in ω ≪ T with a 1-loop dia-
grammatic result in ω ≫ T. In Fig. 1, we plot the emerging
global picture of σðωÞ in two-flavor perturbative QCD with
αs ¼ 0.2 (neglecting the log factor) and μA=T ¼ 0.1. For
comparison, we also show a result in the AdS=CFT
correspondence for the strongly coupled regime. One
can see that at large frequency the pQCD and AdS=CFT
results for the real part of conductivity approach each other,
whereas at small frequency these results significantly differ,
signaling the difference in the relaxation mechanisms of
these approaches. At zero frequency, the CME conductivity
is completely fixed by the chiral anomaly and is universal.
The imaginary part of AC conductivity is seen to exhibit
different behavior both at small and large frequencies.

VII. DISCUSSION

We have identified the new contribution to chiral mag-
netic conductivity—the magnetization current (11) that
allows us to quantitatively reproduce the field-theoretic
AC response in terms of kinetic theory. The magnetization
current results from the spin response of chiral quasiparticles

FIG. 1. The real (blue) and imaginary (red) parts of σðωÞ in two-
flavor pQCD with αs ¼ 0.2 and μA=T ¼ 0.1 (solid lines). The
dotted curves are the results in the AdS=CFT correspondence [16].

TABLE I. The dissection of CME in the hydrodynamic
(ω ≪ τ−1R ) and the free-streaming (ω ≫ τ−1R ) regimes. The num-
bers are in units of the equilibrium CME conductivity.

ω ≪ τ−1R ω ≫ τ−1R

JEQ 1
3 0

JKM 2
3

2
3

JM 0 − 1
3

Jtotal 1 1
3

ANATOMY OF THE CHIRAL MAGNETIC EFFECT IN AND … PHYSICAL REVIEW D 95, 051901(R) (2017)

051901-5

RAPID COMMUNICATIONS

Kharzeev, Stephanov,Yee

real part

imaginary part

dashed: AdS/CFT
solid: CKE

CKE with relaxation time approximation
σ(ω) = σ0(1 −

2
3

ω
ω + iτ−1

R
)ω dependence of CME



Dilepton production
QGP

Lepton pair

Π<μν(X, q) = ∫ d4seiq⋅s⟨jν(X − s/2)jμ(X + s/2)⟩

p1

p2

q

dΓ
d4q

= −
α

24π4
Π<μ

μ(q, X)

Photon polarization funciton

Dilepton production rate

X

Gongyo, YH, Tachibana (’18)



Di-lepton production

ω
θ

q

dΓ
d4q

=
dΓ0

d4q
+

dΓω

d4q

θ
0 1 2 3−1−2−3

0

2

4

−2

−4

angle dependence× 10−6

μ5 = 20
ω = 10

MeV
MeV

T = 200MeV q0 = 4GeV
GeV|q | = 2

(dΓ
ω

d4
q

)/
(dΓ

0

d4
q

)

dΓω

d4q
= (Ωγ ⋅ ω)C(q)with

Gongyo, YH, Tachibana(’18)

Ωγ =
̂q

|q |2



Puzzle?

(Δ0 + (1 + B ⋅ Ω) ̂qiΔi + ϵijkEjΩkΔi)f = 0
reproduces covariant anomaly

Δμ = ∂μ + Fνμ
∂

∂pν

∂μ jμ
5 =

1
2π2

E ⋅ B

CKE by Son, Yamamoto (’12), YH, Pu, Yang (’17) 
where

(Δ0 + (1 + B ⋅ Ω) ̂qiΔi + ( 1
2

ϵijkEjΩk−
1
4

Bi
⊥)Δi)f = 0

Carignano, Manuel, Torres-Rincon (’18)
CKE from on-shell effective theory 

reproduces consistent anomaly ∂μ jμ
5 =

1
3

1
2π2

E ⋅ B



Summary
Chiral kinetic theory:  

Effective theory  
reproducing chiral anomaly

Novel dissipative anomalous transports are found.

Quarks have mass. What is mass correction to CKE? 
Mass correction to CVE cf. Flachi, Fukushima (’17), Lin, Yang (’18)

jμ
5 = (T2

6
−

m2

4π2 )ωμ

Talk by Lixin Yang (Parallel II.1)

Analysis with collisions without relaxation time 
approximation

Application to HIC and cond-mat


