ATHIC2018 @ Hefei Nov. 3~6, 2018

Hydrodynamics with Anomaly Transport & CME in Isobaric Collisions

Jinfeng Liao

Indiana University / CCNU

Research Supported by U.S. NSF & DOE and by NSFC

Contents lists available at ScienceDirect

Annals of Physics

journal homepage: www.elsevier.com/locate/aop

Check for

(McGill; PhD @ IUB)

Yin Jiang (Beihang), Yi Yin (MIT), Elias Lilleskov (REU)

Anomalous chiral transport in heavy ion collisions from Anomalous-Viscous Fluid Dynamics

SEVIER

Shuzhe Shi ^{a,*}, Yin Jiang ^{b,c}, Elias Lilleskov ^{d,a}, Jinfeng Liao ^{a,e,*}

arXiv:1711.02496

The EBE-AVFD "Warriors"

XXVIIth International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2018)

Chiral Magnetic Effect in Isobaric Collisions from Anomalous-Viscous Fluid Dynamics (AVFD)

Shuzhe Shi^a, Hui Zhang^{b,a}, Defu Hou^b, Jinfeng Liao^{* a,b}

^aPhysics Department and Center for Exploration of Energy and Matter, Indiana University, 2401 N Milo B. Sampson Lane, Bloomington, IN 47408, USA. ^bInstitute of Particle Physics and Key Laboratory of Quark & Lepton Physics (MOE), Central China Normal University, Wuhan, 430079, China.

Shuzhe Shi

Defu Hou

Exciting Progress: See Recent Reviews

Prog. Part. Nucl. Phys. 88, 1 (2016)[arXiv:1511.04050 [hep-ph]].

J. Liao, Pramana 84, no. 5, 901 (2015) [arXiv:1401.2500 [hep-ph]].

Outline

- Introductory Discussions
- The AVFD Framework
- AVFD Results for AuAu Collisions
- Predictions for CME in Isobaric Collisions
- Summary

Introductory Discussions

Chiral Symmetry & SSB

 $egin{aligned} \mathcal{C} lassical \, symmetry: \ \mathcal{L} &= i ar{\Psi} \gamma^\mu \partial_\mu \Psi \ \mathcal{L} &= i ar{\Psi} \gamma^\mu \partial_\mu \Psi_L + i ar{\Psi}_R \gamma^\mu \partial_\mu \Psi_R \ \Lambda_A : \Psi & o e^{i \gamma_5 heta} \Psi \ \partial_\mu J_5^\mu &= 0 \end{aligned}$

 $- M = m - 2G \langle \bar{\psi}\psi \rangle$

Constituent mass

> Lagrangian (SM) mass

The "Origin of Mass"

QCD interactions (via SSB) account for nearly all the visible mass in the Universe.

A typical person, say ~ 70 kg * Reasonable estimate, dominantly H2O ~ 10 protons + 8 neutrons ~ 28 u quarks + 26 d-quarks

* Mass from Higgs: ~1.7kg (~2.4%) * Mass from QCD: ~ 68.3kg (~97.6%)

The QCD chiral symmetry is just of paramount importance!

QCD & Chiral Symmetry

* Spontaneously broken chiral symmetry in the vacuum is a fundamental property of QCD.

* A chirally symmetric quark-gluon plasma at high temperature is an equally fundamental property of QCD!

Could we see direct experimental evidence for that?

"Little Bang" in High Energy Nuclear Collision

* Quark-gluon plasma (QGP) is created in such collisions. * It is PRIMORDIALLY HOT ~ trillion degrees ~ early universe. * Is chiral symmetry restored?

Chiral Anomaly

Chiral anomaly is a fundamental aspect of QFT with chiral fermions.

Classical symmetry:

$$egin{aligned} \mathcal{L} &= i ar{\Psi} \gamma^\mu \partial_\mu \Psi \ \mathcal{L} & o i ar{\Psi}_L \gamma^\mu \partial_\mu \Psi_L + i ar{\Psi}_R \gamma^\mu \partial_\mu \Psi_R \ \Lambda_A &: \Psi o e^{i \gamma_5 heta} \Psi \ \partial_\mu J_5^\mu &= 0 \end{aligned}$$

Broken at QM level:

$$\begin{aligned} \partial_{\mu}J_{5}^{\mu} &= C_{A}\vec{E}\cdot\vec{B} \\ \frac{dQ_{5}}{dt} &= \int_{\vec{x}}C_{A}\vec{E}\cdot\vec{B} \end{aligned}$$

* C_A is universal anomaly coefficient* Anomaly is intrinsically QUANTUM effect

[e.g. pi0—> 2 gamma]

The Chiral Magnetic Effect (CME)

Intuitive Picture of CME

Intuitive understanding of CME:

Magnetic polarization —> correlation between micro. SPIN & EXTERNAL FORCE

Chiral imbalance —> correlation between directions of SPIN & MOMENTUM

Transport current along magnetic field

 $\vec{J} = \frac{Q^2}{2-2} \,\mu_5 \,\vec{B}$

Searching for CME in Laboratories

CME was observed via negative magnetoresistance in semimetals.

Observe CME for the subatomic chiral matter in heavy ion collisions?

(nearly) chiral quarks
chirality imbalance
strong magnetic field

CME and Beam Energy Scan

Restoration of chiral symmetry only at high enough beam energy -> beam energy dependence is crucial!

* We'd like to see a chiral QGP above certain threshold energy via CME * We'd like to see its turning off at low enough energy

From Gluon Topology to Quark Chirality

$$N_5(t \to +\infty) - N_5(t \to -\infty) = \frac{g^2}{16\pi^2} \int dt d^3 \mathbf{r} \, G_a^{\mu\nu} \tilde{G}_{\mu\nu}^a$$

QCD anomaly: gluon topology —> chirality imbalance

$$N_R - N_L = N_5 = 2Q_w$$

Strong Electromagnetic Fields

Large angular momentum together with large (+Ze) nuclear charge —> strong magnetic field!

Strong Electromagnetic Fields Out-of-plane Y в $\begin{array}{cc} \mathbf{X} & E, B \sim \gamma \frac{Z \alpha_{EM}}{R_{\Lambda}^2} \sim 3 m_{\pi}^2 \end{array}$ B field Common Strongest Compact Magnet Steady B-field Astro-objects at RHIC Earth

• Strongest B field (and strong E field as well) naturally arises! [Kharzeev,McLerran,Warringa;Skokov,et al; Bzdak-Skokov; Deng-Huang; Skokov-McLerran;Tuchin; ...]

10^13-15

10^17

• "Out-of-plane" orientation (approximately) [Bloczynski-Huang-Zhang-Liao]

10^5

100

0.6

Strong Electromagnetic Fields

Quantitative simulations confirm the existence of such extreme fields!

[STAR measurements of di-electron — direct hint?! PRL2018]

From CME Current to Charge Separation

[Kharzeev 2004; Kharzeev, McLerran, Warringa, 2008;...]

$$\frac{dN_{\pm}}{d\phi} \propto \dots + a_{\pm} \sin(\phi - \Psi_{RP})$$

$$< a_{\pm} > \sim \pm < \mu_5 > B$$

Very difficult measurement:

- * Zero average, only nonzero variance;
- * Correlation measurement with significant backgrounds;
- * Signal likely very small

Experimental Observable

charge separation \Rightarrow charge dept. two-particle correlation Voloshin, 2004 $\gamma = \langle \cos(\Delta \phi_i + \Delta \phi_j) \rangle = \langle \cos \Delta \phi_i \cos \Delta \phi_j \rangle - \langle \sin \Delta \phi_i \sin \Delta \phi_j \rangle$ $\delta = \langle \cos(\Delta \phi_i - \Delta \phi_j) \rangle = \langle \cos \Delta \phi_i \cos \Delta \phi_j \rangle + \langle \sin \Delta \phi_i \sin \Delta \phi_j \rangle$

 $\gamma = \kappa v_2 F - H$ $\delta = F + H$

F: Bulk Background H: Possible Pure CME Signal = $(a_{1,CME})^2$

Bzdak, Koch, JL, 2012

Recent Exp. Search Status

[From Z. Ye, STAR Summary Talk @ QM2018]

ALICE @ LHC 2.76TeV: signal level possibly about 8~10%

CMS @ LHC 5.02TeV: signal level no more than 4%

The trend with beam energy seems in line with expectation!

MORE Consistent with Being NONZERO?!

A "naive" statistical interpretation: (8.5 +/- 1.2)%. It is MORE consistent with being NONZERO @ 200GeV!

Encouraging experimental evidence for CME in QGP — can we quantitatively compute CME signal?

AVFD Framework

[Not discussed here: calculations based on transport framework, e.g. works by X. Huang, G. Ma, Y. Ma, J. Xu, C.M. Ko,]

Fluid Dynamics That Knows Left & Right

Microscopic quantum anomaly emerges as macroscopic anomalous hydrodynamic currents!

It would be remarkable to actually "see" this new hydrodynamics at work in real world materials!

The AVFD Framework

AVFD: Anomalous-Viscous Fluid Dynamics

The AVFD Framework

[[]We now also have MUSIC-AVFD!]

Demonstrating the AVFD

Upper: NO magnetic field Lower: with B field (along y+ direction)

Demonstrating the AVFD

Upper: Left-Handed (LH), with B field (along y+ direction) Lower: Right-Handed (RH), with B field (along y+ direction)

The Charge Separation from AVFD

B field ⊗ µ₅ ⇒ current ⇒ dipole (charge separation) dN_±/d $\phi \propto 1 + 2 a_{1\pm} \sin(\phi - \psi_{RP}) + ...$

 $H_{SS}-H_{OS} \leftrightarrow 2(a_1)^2$

AVFD Results for AuAu Collisions

We now have a versatile tool to quantitatively understand and answer many important questions about CME in heavy ion collisions!

arXiv:1611.04586

The Influence of the Magnetic Field

Strong influence by B field evolution; Significant theoretical uncertainty!

The Axial Charge Initial Condition

Very sensitive to initial axial charge; Significant theoretical uncertainty!

The Influence of the Viscous Transport

First calibration for the influence of the viscous transport on charge separation signal!

AVFD Predictions v.s Experimental Data

Table 1. Centrality dependence of magnetic field peak strength and the initial chirality imbalance. The n_5/s shown here is obtained with a saturation scale $Q_s^2 = 1.25 \text{GeV}^2$.

Event-By-Event AVFD

Include EBE fluctuations:

- Initial Conditions
- Statistic @ Freeze-out
- Hadron Cascade

Important for better understanding: * Interplay between signal and BKG; * Experimental analysis methods

EBE-AVFD for Event-Shape Engineering Au-Au @ 200GeV 50-60%

The intercept is very sensitive to the CME contribution!

Slope depends on CME too: naive subtraction may not be good.

EBE-AVFD for R-Correlator

Magdy, Lacey, et al, arXiv:1710.01717; arXiv:1803.02416

R-correlator sensitively responds to CME contribution.

EBE-AVFD Predictions for CME in Isobaric Collisions (Newest results!)

Shi, Zhang, Hou, JL, in final preparation, to appear soon; Shi, Zhang, Hou, JL, contribution in QM18 proceedings.

Using Isobaric Collisions for CME Search

Key idea: contrasting two systems with identical bulk, varied magnetic fields.

Charge Asymmetry Correlation Measurement

How to Choose Identical Systems?

Insight from initial conditions: joint cut on Multiplicity-Eccentricity

How to Choose Identical Systems?

Conventional centrality bin (without joint-cut): A few percent level of difference in bulk geometry

How to Choose Identical Systems?

Eccentricity is guaranteed the same!

B field differs by 12~20% !

After joint-cut:

Vanishing difference in eccentricity, Sizable difference in magnetic fields!!!

Analyzing Actual EBE-AVFD Events for Isobars

Analyzing Actual EBE-AVFD Events for Isobars

 V_2

Correlation Observables of Isobars from AVFD

Difference in correlations is very sensitive to CME contribution!

Both gamma and delta are important to look at!

Correlation Observables of Isobars from AVFD

Exp. statistics are expected to shrink error bar by a factor of ~10

Both gamma and delta are important to look at!

Absolute Difference between Isobars from AVFD

Summary & Outlook

Summary

AVFD: A versatile tool for an era of quantitative study of CME signals in heavy ion collisions !

EBE-AVFD for the Isobars: 1) Event selection for truly identical bulk! 2) Both gamma & delta needed! 2) Absolute difference in correlations sensitive to CME!

Mapping Out the Phases of QCD Matter

* Establishing a chiral QGP at higher energy via anomalous chiral effects * IF hints of CME at 200GeV —> Isobar exp. at BES energies is crucial!

Beam Energy Scan Theory (BEST) Collaboration: BNL, IU, LBNL, McGill U, Michigan State U, MIT, NCSU, OSU, Stony Brook U, U Chicago, U Conn, U Huston, UIC

Backup Slides

The Vector Charge Initial Condition

Insensitive to nonzero vector charge density

The Influence of the Resonance Decays

Considerable impact from resonance decays; Must be included for quantitative results!

Relaxation Effect for the CME Current ??

Pre-Hydro CME ??

MUSIC(2+1) + AVFD versus VISH(2+1) + AVFD

Axial Charge Relaxation

The axial charge non-conservation is important and can be quantified in AVFD.