

Low-mass dimuon production at forward rapidity in pp, p-Pb and Pb-Pb collisions with ALICE

Satoshi Yano Laboratoire Quark Gluon Plasma Département de Physique Nucléaire, IRFU, CEA for the ALICE Collaboration

The 7th Asian Triangle Heavy-Ion Conference (ATHIC2018)

Measurement of low-mass dimuons

- In pp collisions
 - Test of the strangeness production with QCD
 - Reference for p-Pb and Pb-Pb collision study
- In p-Pb collisions
 - Investigation of Cold Nuclear Matter (CNM) effect
 - Study of new phenomena at high multiplicity
- Pb-Pb collisions
 - Strangeness production mechanisms in a hot and dense matter
 - Observation of chiral symmetry restoration
 - Thermal dilepton emitted at early stage of the collisions

The ALICE muon detector

- Muon spectrometer ($2.5 < \eta_{\mu} < 4.0$)
 - Front absorber ($10\lambda_{int}$, ~ $60X_0$)
 - Tracking chambers (5 stations)
 - Dipole magnet (3Tm)
 - Iron wall (7.2 λ_{int})
 - Trigger chambers (2 stations)

Easier particle identification w.r.t electron At LHC Not too forward to measure central physics! Forward enough to measure low p_T muon!

Access to unique physics, e.g. low-mass and low- p_T region, with clean muon probes for Quark-Gluon Plasma created in PbPb collisions !!!

The ALICE muon detector

- Muon spectrometer ($2.5 < \eta_{\mu} < 4.0$)
 - Front absorber ($10\lambda_{int}$, ~ $60X_0$)
 - Tracking chambers (5 stations)
 - Dipole magnet (3Tm)
 - Iron wall (7.2 λ_{int})
 - Trigger chambers (2 stations)

Easier particle identification w.r.t electron At LHC

Not too forward to measure central physics! Forward enough to measure low p_T muon!

Access to unique physics, e.g. low mass and low p_T region, with clean muon probes for Quark-Gluon Plasma created in PbPb collisions !!!

Signal extraction of low-mass dimuons

 $\frac{N_{\rm mix}^{+-}}{2\sqrt{N_{\rm mix}^{++}N_{\rm mix}^{--}}}$

- Invariant mass of unlike sign muon pairs
 - Muon tracks match the muon trigger
 - Within the acceptance $2.5 < \eta_{\mu} < 4.0$ and $2.5 < y_{\mu\mu} < 4.0$
- Estimation of combinatorial background through

$$N_{BKG} = 2R\sqrt{N^{++}N^{--}} \qquad \qquad R = \frac{1}{2\sqrt{2}}$$

- S/B ~ 0.1 in Pb-Pb collisions @ 0-10% (> 2 GeV/c)
- Hadronic cocktail fit
 - Direct decay: η, ρ, ω, φ
 - Dalitz decay: η, ω, η'
 - Correlated continuum: open charm

In pp collisions

Energy dependence of φ-meson production cross section in pp collisions

- In pp collisions at
 - 2.76, 5.02, 7, 8 and 13 TeV
- Comparison of the production cross section of φ -meson as a function of p_T and at the several LHC collision energies
 - Production of hidden strangeness in small system
 - Baseline for p-Pb and Pb-Pb study
- The energy dependence of the $\phi\text{-meson}$ cross section, integrated over the specific phase space
 - PYTHIA8 Monash-2013: Underestimate the cross section for all energies
 - PHOJET: Good description at LHC energies

Double differential cross section of ω and ϕ in pp collisions at $\sqrt{s} = 13$ TeV

- Measurement of double differential cross section
 - Collected > 30 pb⁻¹ during Run2 (2015 2018) with dimuon trigger
- Comparison with model predictions for φ-meson
 - PYTHIA8 Monash-2013: Fair description for all p_T and y
 - PHOJET: Good description only $p_T = 1 \sim 2 \text{ GeV}/c$
- Comparison with model predictions for ω -meson
 - Pythia8 Monash-2013 and PHOJET: Overestimation across the whole p_T and y

In p-Pb collisions

Muon measurement in p-Pb collisions

- In p-Pb/Pb-p collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ with 5.0 nb⁻¹/5.8 nb⁻¹
- Covered forward/backward rapidity range for p-Pb and Pb-p collisions by muon spectrometer in ALICE
- Shift of $y_{\rm cm}$ by 0.465 in the p-beam direction due to the different energy per nucleon of the the p and Pb beams

Production cross section and R_{FB} of φ meson as a function of p_T

- Production cross section as a function of rapidity
 - HIJING and DPMJET: Do not describe the φ-meson production cross section, but describe well the charged particle distribution at mid-rapidity
- Forward-to-backward ratio

φ-meson nuclear modification factor

 $R_{\rm pPb} =$

- Calculated in each p_{T} bin as
 - $\sigma_{\phi}^{pp}(p_T)$: Interpolation between measurements of 2.76 and 7 TeV

Backward rapidity

Mid rapidity

Forward rapidity

 $\frac{\mathrm{d}N_{\mathrm{pPb}}/\mathrm{d}p_{\mathrm{T}}}{\langle T_{\mathrm{pPb}}\rangle \times \mathrm{d}\sigma_{\mathrm{pp}}/\mathrm{d}p_{\mathrm{T}}}$

- At backward rapidity: $R_{pPb} > 1$ with a peak at $p_T \sim 3 4$ GeV/c
- At mid and forward rapidity: $R_{\rm pPb}$ grows for $p_{\rm T} < 3 {\rm GeV/_c}$

 $R_{pPb} \sim 1 \text{ for } p_T > 3 \text{ GeV/c}$ Hint for flow?

In Pb-Pb collisions

13

Low-mass dimuons in Pb-Pb collisions

- Integrated luminosity:
 - $-\sqrt{s_{NN}} = 2.76 \text{ TeV}: 71 \mu b^{-1}$
 - $-\sqrt{s_{NN}} = 5.02 \text{ TeV}: 225 \mu b^{-1}$
- Online trigger threshold: $p_T \sim 1 \text{ GeV/c}$
- Signal extraction procedure: the same as in small systems
- S/B: ~ 0.1 in most central collisions for ϕ -meson

Centrality: 0 - 10%

Centrality: 30 - 40%

Centrality: 10 - 20%

Centrality: 70 - 80%

14

Nuclear modification factor

- Calculated in each $p_{\rm T}$ bin as $R_{\rm PbPb} = \frac{{\rm d}N_{\rm PbPb}/{\rm d}p_{\rm T}}{\langle T_{\rm PbPb} \rangle \times {\rm d}\sigma_{\rm pp}/{\rm d}p_{\rm T}}$
- Nuclear modification factor for $\sqrt{s_{NN}} = 2.76 \text{ TeV}$
 - Same suppression trend as mid-rapidity
 - R_{AA} < 1 from <N_{part}> ~ 60 corresponding to 50-55 % centrality
- Nuclear modification factor for $\sqrt{s_{NN}} = 5.02 \text{ TeV}$
 - Same trend as the $\sqrt{s_{NN}} = 2.76$ TeV results
 - Larger suppression in most central collisions than in peripheral collisions
 - Increasing suppression with p_T in the measured range

Comparison of ω/ρ and ϕ mesons

- Ratio of acceptance corrected ϕ and sum of ω/ρ yields
 - Sensitive to strangeness production mechanism
 - Observation of the saturation from $\langle N_{part} \rangle \sim 60$

Threshold for strangeness production? $\langle N_{\rm part} \rangle \sim 60$ $\langle dN_{ch}/d\eta \rangle \sim 210$ Outlook: Let's look at small systems and comparable multiplicity!

Future plans

- LHC-Run2
 - In total ~30 pb⁻¹ data has been collected in pp collisions at $\sqrt{s} = 13 \text{ TeV}$
 - Data taking in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV by muon trigger corresponding to 1 nb⁻¹ (2015 + 2018)
 - Higher p_T reach and reduced uncertainties
- After LS2 (2021~)
 - Muon Forward Tracker (MFT)
 - Improvement of mass resolution by factor ~4
 - Improvement of S/B by factor $\sim 10^{\circ}$

Kenta Shigaki @ Parallel III.3

Wider physics topic related to $low-p_T$ and low-mass dimuons can be accessed with MFT!

17

Summary

- In pp collisions
 - Low-mass dimuons has been measured at several collisions energies and provide insights into strangeness production mechanism
- In p-Pb collisions
 - Large forward/backward asymmetry has been observed
 - Enhancement at backward rapidity w.r.t pp collisions has been measured
- In Pb-Pb collisions
 - The R_{PbPb} at $\sqrt{s_{NN}} = 2.76$ and 5.02 TeV has been measured
 - The forward R_{PbPb} is consistent with mid-rapidity at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$
 - $< N_{part} > ~ 60$ is the key value for strangeness production mechanism
- Future plans
 - Investigation of new phenomena in small system with the full LHC-Run2 statistics
 - Muon Forward Tracker (MFT) will allow to access wider physics topics