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Hydro is remarkably successful in AA

Magnitude of vn

[McDonald, Gale, Jeon, Shen,
Shenke, Denicol, Ollitrault, Pal,
Luzum, Niemi, Heinz,...]

Flow correlations
Flow fluctuations

• Flow fluctuations and correlations are more differential measurables.

• Hydro paradigm: vn ⇔ QGP hydrodynamic response to IC !

i.e., Vn = Vn(En,medium resp.)

{
En : initial state geometry

medium resp.: fluid dynamics η , ζ
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Fluctuations of flow in small systems: flow cumulants !

• Cumulants involve multi-particle correlations ⇒ collective phenomenon.

• Quantitative description of flow fluctuations further confirms fluidity.

• Hydro predicts universal non-Gaussianity in pA from IC (and for vn):
[LY, Ollitrault, Poskanzer]

vn{2} > vn{4}&vn{6}&vn{8}, NOT JUST ‘≈’
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• If one takes ratios:

hydro prediction

hydro prediction

- Quantitatively agreement for
very fine structures in flow
fluctuations.

- No intrinsic shape ?

- Hydro is remarkably
successful in pA!

- Why hydro is remarkably
successful in pA?
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Hydrodynamics

∂µT
µν = 0

• Tµν is expanded in gradients perturbatively,

Tµν = euµuν − P∆µν︸ ︷︷ ︸
ideal hydro

+ η〈∇µuν〉+ ζ∆µν∇ · u︸ ︷︷ ︸
Navier-Stokes hydro

+ O(∇2)︸ ︷︷ ︸
2nd order hydro

+O(∇3) + . . .

- Applicability condition of hydro: close to thermal equilibrium

|∇| ∼ Kn ∼ λmfp

L
� 1

{
λmfp : mean free path

L : system size

- Truncation in practical simulations: 2nd order viscous hydro.

higher order (≥3) contributions are ignored!

- Number of gradient structures grows as n!
[Grad, Heller, Spanlinski, Denicol, Noronha, LY, Blaizot, ...]

⇒ Perturbative expansion in hydro is not convergent!
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Challenges of hydro in pA: system is out-of-equilibrium!

• From AA to pA system transverse size reduces,

LpA ∼
LAA
10
∼ O(1) fm ⇒ Kn increases

such that higher order gradients CANNOT be simply ignored.
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A similar case of out-of-equilibrium quarks and gluons

• Pre-equilibrium evolution and thermalization in AA:

hydro

1

0

Gauge fields
kinetic theory

0+ τ01/Qs

τ

PL/PT

right before the onset of hydro, system size along the beam axis:

Llong ∼ τ0 ∼ O(1) fm

• Thermalization (or hydrodynamization) is a long-standing question ...

We study out-of-equilibrium 1D Bjorken expansion.
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Solution: out-of-equilibrium hydro from kinetic theory

[see also Heller, Svensson, Romatschke, Strickland,...]

• Transport equation with relaxation time approximation and Bjorken exp:[
∂τ −

pz
τ
∂pz

]
f(p, τ) = −f(p, τ)− feq(p/T )

τR
, τR = τR(T ) ∼ η

s

Define Ln =
∫
p
p2P2n(pz/p), [LY, Blaizot]

∂Ln
∂τ

=−1

τ
[anLn + bnLn−1 + cnLn+1]︸ ︷︷ ︸

free streaming

−Ln
τR

(1− δn0), n = 0, 1, ...

- L0 = e, L1 = PL − PT
- an, bn and cn are constant coefficients.

a0 =
4

3
, a1 =

38

21
, . . .

- Kn=τR/τ defines Knudsen number.
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∂Ln
∂τ

=− 1

τ
[anLn + bnLn−1 + cnLn+1]− Ln

τR
(1− δn0) n = 0, 1, ...

• Truncate at n-th order: ignore all L-moments higher than n-th order

- at n = 0

∂e

∂τ
+

4

3

e

τ
= 0 → e ∼ τ−4/3 ideal hydro

- at n = 1

∂L0

∂τ
=− 1

τ
[a0L0 + c0L1]

∂L1

∂τ
=− 1

τ
[a1L1 + b1L0]− L1

τR
⊃ 2nd order viscous hydro.

- at higher orders ⇒ higher order viscous hydro.

Ln: nth order viscous correction term ∼ 1/τn ⇒ determine hydro fixed point
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A test of truncation
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(a)

n=1
n=2
n=3
n=4

Truncation works well, converges to the exact solution.
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The free-streaming fixed points: τ/τR → 0

∂Ln
∂τ

=− 1

τ
[anLn + bnLn−1 + cnLn+1]

For infinite n:

• L0 = L1 = L2 = L3 = . . .

⇒ Ln = Ln(τ0)
(τ0
τ

)2

→ gn ≡ τ∂τ lnLn = −2

• Ln(τ) = P2n(0)L0(τ),

⇒ Ln(τ) = Ln(τ0)
(τ0
τ

)
→ gn ≡ τ∂τ lnLn = −1

For finite n,
a0 c0 0 0 . . .
b1 a1 c1 0 . . .
0 b2 a2 c2 . . .
. . . . . . . . . . . . . . .

⇒ ≈ −2(unstable) and ≈ −1(stable)
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The hydro fixed points: τ/τR →∞

Ansatz form of gradient expansion

Ln =
∑
m=0

α
(n)
m

τn

asymptotic decay rate determined by the leading term: Ln ∼ α(n)
n /τ

⇒ gn ≡ τ∂τ lnLn = −4 + 2n

3
(τR ∝ 1/T )

⇒ gn ≡ τ∂τ lnLn = −4 + 3n

3
(τR constant)

These are stable fixed points in the hydro regime.
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Attractor solutions: transition between fixed points
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• Attractor solution for every
gn. (Infinite number of
attractors).

• Attractor solution exists, with
or without conformal
symmetry, beyond Bjorken
symmetry.
P. Romatschke, M. Martinez, M.

Strickland, G. Denicol, ...

• Attractor corresponds to
Borel-summation of hydro
gradient expansion.
M.Heller, M. Spalinski, R. Janik, P.

Witaszczky, G. Basar, G. Dunne, ...
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Renormalization of η/s

Effects from higher order moments/viscous hydro (leading order):

∂τL0 =− 1

τ
(a0L0 + c0L1) ,

∂τL1 =− 1

τ
(a1L1 + b0L0)−

[
1 +

c1τR
τ

L2

L1

]
︸ ︷︷ ︸

Z−1
η/s

L1

τR
(2nd hydro) ,

g2(τ/τR) =− a2 − b2
L2

L1
− τ

τR
, (Higher order hydro)

• Taking attractor solution for g2: Borel-resummed gradients.

• Absorb higher order viscous corrections by redefinition of η/s.

• Off-equilibrium effects w.r.t. 2nd order hydro ⇔ renormalized η/s !
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Renormalization of η/s
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leading order
next leading order

• Out-of-equilibrium physics can be effectively absorbed into a reduced
η/s. [E. Shuryak, M. Lublinsky, P. Romatschke]

• Non-Newtonian fluid with shear thinning:
[A. Behtash, S. Kamata, and M. Martinez]

η = η(∇) and
dη

d∇ < 0
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Numerical test of η/s renormalization
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(b)

n=1
with renormalized η/s

2nd order viscous hydro using renormalized η/s
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Summary

• Hydro has been applied to small colliding systems successfully.

• It is very likely that in small systems the medium is out-of-equilibrium.

• Out-of-equilibrium hydro requires summation of higher order terms.

• Borel resummation lead to attractors, from hydro and kinetic theory.

• Resummed higher orders can be absorbed into redefinition of η/s

• 2nd order viscous hydro works with renormalized η/s.
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Back-up slides
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Solution: out-of-equilibrium hydro

1/ From the perspective of fluid dynamics,

• MIS hydro with Bjorken symmetry ( τ =
√
t2 − z2, ξ = tanh−1(z/t))

τ ė = −4

3
e+ πξξ , τππ̇

ξ
ξ =

4η

3τ
−
λ1(πξξ)

2

2η2
−

4τππ
ξ
ξ

3τ
− πξξ

for which Kn−1 = w = τT .

• Hydro solution with gradient expansion:

e(τ) = e0

(τ0
τ

)4/3 [
1 +

e1
τ2/3

+
e2
τ4/3

+ . . .
]

or

g0 ≡
∂ ln e

∂ ln τ
= −4

3︸︷︷︸
ideal hydro

+

∞∑
n=1

αnw
−n , αn ∼ n!
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attractor

Out−of−equilibrium

Hydro 
Free streaming

1st, 2nd order hydro

1+g_0/4

[M. Heller, M. Spalinski, 2015]

• The quantity g0 has an attractor solution (the purple line).
• Borel resummation and trans-series,

g0(w) =
∞∑
n=0

α(0)
n w−n + ce

− 3w
2cτπ

(
w
cη−2cλ1
cτπ

∑
n=0

α(1)
n w−n

)
+ . . .

• Non-hydro modes decay exponentially, w.r.t. attractor solutions.
[M. Heller, M. Spalinski, P. Romatschke, A. Kurkela, U. Wiedemann, ...]
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