Recent development in hydrodynamic description of small colliding systems

Li Yan

Institute of Modern Physics, Fudan University

ATHIC 2018, Hefei, China

Magnitude of v_n

[McDonald, Gale, Jeon, Shen, Shenke, Denicol, Ollitrault, Pal, Luzum, Niemi, Heinz,...]

Magnitude of v_n

Magnitude of v_n

Magnitude of v_n

• Flow fluctuations and correlations are more differential measurables.

Magnitude of v_n

- Flow fluctuations and correlations are more differential measurables.
- Hydro paradigm: $v_n \Leftrightarrow \text{QGP}$ hydrodynamic response to IC !

i.e., $V_n = V_n(\mathcal{E}_n, \text{medium resp.}) \begin{cases} \mathcal{E}_n : \text{initial state geometry} \\ \text{medium resp.: fluid dynamics } \eta, \zeta \end{cases}$

Fluctuations of flow in small systems: flow cumulants !

• Cumulants involve multi-particle correlations \Rightarrow collective phenomenon.

- Quantitative description of flow fluctuations further confirms fluidity.
- Hydro predicts universal non-Gaussianity in pA from IC (and for v_n): [LY, Ollitrault, Poskanzer]

 $v_n\{2\} > v_n\{4\} \gtrsim v_n\{6\} \gtrsim v_n\{8\},$ NOT JUST ' \approx '

• If one takes ratios:

- Quantitatively agreement for very fine structures in flow fluctuations.
- No intrinsic shape ?

- Hydro is remarkably successful in pA!
- Why hydro is remarkably successful in pA?

Hydrodynamics

$$\partial_{\mu}T^{\mu\nu} = 0$$

• $T^{\mu\nu}$ is expanded in gradients *perturbatively*,

$$T^{\mu\nu} = \underbrace{eu^{\mu}u^{\nu} - P\Delta^{\mu\nu}}_{\text{ideal hydro}} + \underbrace{\eta \langle \nabla^{\mu}u^{\nu} \rangle + \zeta \Delta^{\mu\nu} \nabla \cdot u}_{\text{Navier-Stokes hydro}} + \underbrace{O(\nabla^2)}_{\text{2nd order hydro}} + O(\nabla^3) + \dots$$

- Applicability condition of hydro: close to thermal equilibrium

$$|\nabla| \sim \mathrm{Kn} \sim \frac{\lambda_{\mathrm{mfp}}}{L} \ll 1 \quad \begin{cases} \lambda_{\mathrm{mfp}} : \text{ mean free path} \\ L : \text{ system size} \end{cases}$$

- Truncation in practical simulations: 2nd order viscous hydro.

higher order (≥ 3) contributions are ignored!

- Number of gradient structures grows as n!

[Grad, Heller, Spanlinski, Denicol, Noronha, LY, Blaizot, ...]

 \Rightarrow Perturbative expansion in hydro is not *convergent*!

Challenges of hydro in pA: system is out-of-equilibrium!

• From AA to pA system transverse size reduces,

$$L_{pA} \sim \frac{L_{AA}}{10} \sim O(1) \text{ fm} \quad \Rightarrow \quad \text{Kn increases}$$

such that higher order gradients CANNOT be simply ignored.

A similar case of out-of-equilibrium quarks and gluons

• Pre-equilibrium evolution and thermalization in AA:

right before the onset of hydro, system size along the beam axis:

$$L_{long} \sim \tau_0 \sim O(1) \text{ fm}$$

• Thermalization (or hydrodynamization) is a long-standing question ...

We study out-of-equilibrium 1D Bjorken expansion.

Solution: out-of-equilibrium hydro from kinetic theory

[see also Heller, Svensson, Romatschke, Strickland,...]

• Transport equation with relaxation time approximation and Bjorken exp:

$$\left[\partial_{\tau} - \frac{p_z}{\tau}\partial_{p_z}\right]f(\mathbf{p},\tau) = -\frac{f(\mathbf{p},\tau) - f_{\rm eq}(p/T)}{\tau_R}, \qquad \tau_R = \tau_R(T) \sim \frac{\eta}{s}$$

Define $\mathcal{L}_n = \int_{\mathbf{p}} p^2 P_{2n}(p_z/p)$, [Ly, Blaizot]

$$\frac{\partial \mathcal{L}_n}{\partial \tau} = \underbrace{-\frac{1}{\tau} \left[a_n \mathcal{L}_n + b_n \mathcal{L}_{n-1} + c_n \mathcal{L}_{n+1} \right]}_{\text{free streaming}} - \frac{\mathcal{L}_n}{\tau_R} (1 - \delta_{n0}), \quad n = 0, 1, \dots$$

- $\mathcal{L}_0 = e, \ \mathcal{L}_1 = P_L - P_T$

- a_n , b_n and c_n are constant coefficients.

$$a_0 = \frac{4}{3}, \quad a_1 = \frac{38}{21}, \quad \dots$$

- Kn= τ_R/τ defines Knudsen number.

$$\frac{\partial \mathcal{L}_n}{\partial \tau} = -\frac{1}{\tau} \left[a_n \mathcal{L}_n + b_n \mathcal{L}_{n-1} + c_n \mathcal{L}_{n+1} \right] - \frac{\mathcal{L}_n}{\tau_R} (1 - \delta_{n0}) \quad n = 0, 1, \dots$$

• Truncate at n-th order: ignore all \mathcal{L} -moments higher than n-th order - at n = 0

$$\frac{\partial e}{\partial \tau} + \frac{4}{3} \frac{e}{\tau} = 0 \quad \rightarrow \quad e \sim \tau^{-4/3} \qquad \text{ideal hydro}$$

- at
$$n = 1$$

$$\begin{split} \frac{\partial \mathcal{L}_0}{\partial \tau} &= -\frac{1}{\tau} \left[a_0 \mathcal{L}_0 + c_0 \mathcal{L}_1 \right] \\ \frac{\partial \mathcal{L}_1}{\partial \tau} &= -\frac{1}{\tau} \left[a_1 \mathcal{L}_1 + b_1 \mathcal{L}_0 \right] - \frac{\mathcal{L}_1}{\tau_R} \quad \supset \text{2nd order viscous hydro.} \end{split}$$

- at higher orders \Rightarrow higher order viscous hydro.

 \mathcal{L}_n : nth order viscous correction term $\sim 1/\tau^n \Rightarrow$ determine hydro fixed point

A test of truncation

Truncation works well, converges to the exact solution.

The free-streaming fixed points: $\tau/\tau_R \to 0$

$$\frac{\partial \mathcal{L}_n}{\partial \tau} = -\frac{1}{\tau} \left[a_n \mathcal{L}_n + b_n \mathcal{L}_{n-1} + c_n \mathcal{L}_{n+1} \right]$$

For infinite n:

•
$$\mathcal{L}_0 = \mathcal{L}_1 = \mathcal{L}_2 = \mathcal{L}_3 = \dots$$

 $\Rightarrow \mathcal{L}_n = \mathcal{L}_n(\tau_0) \left(\frac{\tau_0}{\tau}\right)^2 \quad \rightarrow g_n \equiv \tau \partial_\tau \ln \mathcal{L}_n = -2$
• $\mathcal{L}_n(\tau) = P_{2n}(0)\mathcal{L}_0(\tau),$
 $\Rightarrow \mathcal{L}_n(\tau) = \mathcal{L}_n(\tau_0) \left(\frac{\tau_0}{\tau}\right) \quad \rightarrow g_n \equiv \tau \partial_\tau \ln \mathcal{L}_n = -1$

For finite n,

$$\begin{pmatrix} a_0 & c_0 & 0 & 0 & \dots \\ b_1 & a_1 & c_1 & 0 & \dots \\ 0 & b_2 & a_2 & c_2 & \dots \\ \dots & \dots & \dots & \dots & \dots \end{pmatrix} \Rightarrow \approx -2 (\text{unstable}) \text{ and } \approx -1 (\text{stable})$$

The hydro fixed points: $\tau/\tau_R \to \infty$

Ansatz form of gradient expansion

$$\mathcal{L}_n = \sum_{m=0} \frac{\alpha_m^{(n)}}{\tau^n}$$

asymptotic decay rate determined by the leading term: $\mathcal{L}_n \sim \alpha_n^{(n)} / \tau$

$$\Rightarrow g_n \equiv \tau \partial_\tau \ln \mathcal{L}_n = -\frac{4+2n}{3} \quad (\tau_R \propto 1/T)$$
$$\Rightarrow g_n \equiv \tau \partial_\tau \ln \mathcal{L}_n = -\frac{4+3n}{3} \quad (\tau_R \text{ constant})$$

These are stable fixed points in the hydro regime.

Attractor solutions: transition between fixed points

- Attractor solution for every g_n . (Infinite number of attractors).
- Attractor solution exists, with or without conformal symmetry, beyond Bjorken symmetry.
 - P. Romatschke, M. Martinez, M. Strickland, G. Denicol, ...
- Attractor corresponds to Borel-summation of hydro gradient expansion.

M.Heller, M. Spalinski, R. Janik, P. Witaszczky, G. Basar, G. Dunne, ...

Renormalization of η/s

Effects from higher order moments/viscous hydro (leading order):

$$\partial_{\tau} \mathcal{L}_{0} = -\frac{1}{\tau} (a_{0} \mathcal{L}_{0} + c_{0} \mathcal{L}_{1}),$$

$$\partial_{\tau} \mathcal{L}_{1} = -\frac{1}{\tau} (a_{1} \mathcal{L}_{1} + b_{0} \mathcal{L}_{0}) - \underbrace{\left[1 + \frac{c_{1} \tau_{R}}{\tau} \frac{\mathcal{L}_{2}}{\mathcal{L}_{1}}\right]}_{Z_{\eta/s}^{-1}} \underbrace{\mathcal{L}_{1}}_{Z_{\eta/s}} \quad (\text{2nd hydro}),$$

$$g_{2}(\tau/\tau_{R}) = -a_{2} - b_{2} \frac{\mathcal{L}_{2}}{\mathcal{L}_{1}} - \frac{\tau}{\tau_{R}}, \quad (\text{Higher order hydro})$$

- Taking attractor solution for g_2 : Borel-resummed gradients.
- Absorb higher order viscous corrections by redefinition of η/s .
- Off-equilibrium effects w.r.t. 2nd order hydro \Leftrightarrow renormalized η/s !

Renormalization of η/s

- Out-of-equilibrium physics can be effectively absorbed into a reduced η/s . [E. Shuryak, M. Lublinsky, P. Romatschke]
- Non-Newtonian fluid with shear thinning:

[A. Behtash, S. Kamata, and M. Martinez]

$$\eta = \eta(\nabla)$$
 and $\frac{d\eta}{d\nabla} < 0$

Numerical test of η/s renormalization

2nd order viscous hydro using renormalized η/s

- Hydro has been applied to small colliding systems successfully.
- It is very likely that in small systems the medium is out-of-equilibrium.
- Out-of-equilibrium hydro requires summation of higher order terms.
- Borel resummation lead to attractors, from hydro and kinetic theory.
- Resummed higher orders can be absorbed into redefinition of η/s
- 2nd order viscous hydro works with renormalized η/s .

Back-up slides

Solution: out-of-equilibrium hydro

1/ From the perspective of fluid dynamics,

• MIS hydro with Bjorken symmetry ($\tau=\sqrt{t^2-z^2},\xi=\tanh^{-1}(z/t))$

$$\tau \dot{e} = -\frac{4}{3}e + \pi_{\xi}^{\xi}, \qquad \tau_{\pi} \dot{\pi}_{\xi}^{\xi} = \frac{4\eta}{3\tau} - \frac{\lambda_1 (\pi_{\xi}^{\xi})^2}{2\eta^2} - \frac{4\tau_{\pi} \pi_{\xi}^{\xi}}{3\tau} - \pi_{\xi}^{\xi}$$

for which $\operatorname{Kn}^{-1} = w = \tau T$.

• Hydro solution with gradient expansion:

$$e(\tau) = e_0 \left(\frac{\tau_0}{\tau}\right)^{4/3} \left[1 + \frac{e_1}{\tau^{2/3}} + \frac{e_2}{\tau^{4/3}} + \dots\right]$$

or

$$g_0 \equiv \frac{\partial \ln e}{\partial \ln \tau} = \underbrace{-\frac{4}{3}}_{\text{ideal hydro}} + \sum_{n=1}^{\infty} \alpha_n w^{-n}, \qquad \alpha_n \sim n!$$

[M. Heller, M. Spalinski, 2015]

- The quantity g_0 has an attractor solution (the purple line).
- Borel resummation and trans-series,

$$g_0(w) = \sum_{n=0}^{\infty} \alpha_n^{(0)} w^{-n} + c e^{-\frac{3w}{2c\tau_{\pi}}} \left(w^{\frac{c_{\eta} - 2c_{\lambda_1}}{c_{\tau_{\pi}}}} \sum_{n=0}^{\infty} \alpha_n^{(1)} w^{-n} \right) + \dots$$

• Non-hydro modes decay exponentially, w.r.t. attractor solutions.

[M. Heller, M. Spalinski, P. Romatschke, A. Kurkela, U. Wiedemann, ...] ATHIC 2018, L. Yan