Phase diagram of two-color QCD matter at finite baryon and axial isospin densities

Jingyi Chao
Institute of Modern Physics, Chinese Academy of Sciences

The 7th Asian Triangle Heavy-Ion Conference @ University of Science and Technology of China, Hefei

Outline

Motivations
\checkmark Different phases of QCD occur in the universe
\checkmark QCD simplifies in extreme environments
\checkmark The behaviors of different matter can be similar at the regime of tran－ sition

QCD like theories
摂 Phase diagram in the plane of $\mu-v_{5}$

Why Electromagnetic Fields

Heavy ion collisions create the strongest magnetic fields in the Laboratory．

Different excited freedoms at different environments

$\underline{\text { Propagators at Constant Magnetic fields }}$

- spin-0

> c.f. (A. Erdas and G. Feldman, Nucl. Phys. B 343, 597)

$$
D(k)=\int_{0}^{\infty} \frac{d s}{\cos (e B s)} \exp \left[i s\left(k_{\Perp}^{2}+k_{\perp}^{2} \frac{\tan (e B s)}{e B s}-m^{2}\right)\right]
$$

where $k_{\text {II }}=\left(k_{0}, 0,0, k_{3}\right)$ and $k_{\perp}=\left(0, k_{1}, k_{2}, 0\right)$.

- $\operatorname{spin}-\frac{1}{2}$
c.f. (J. Schwinger, Phys. Rev. 82, 664)

$$
\$(k)=\int_{0}^{\infty} \frac{d s}{\cos (e B s)} e^{i s\left(k_{11}^{2}+k_{\perp}^{2} \frac{\tan (e B s)}{e B s}-m^{2}\right)}\left[\left(m+\not k_{11}\right) e^{-i e B s \gamma_{3}}+\frac{k_{\perp}}{\cos (e B s)}\right]
$$

spin-1
c.f. (A. Erdas and G. Feldman, Nucl. Phys. B 343, 597)

$$
G^{\mu \nu}(k)=\int_{0}^{\infty} \frac{d s}{\cos (e B s)} e^{i s\left(k_{\| 1}^{2}+k_{\perp}^{2} \frac{\tan (e B s)}{e B s}-m^{2}\right)}\left[F^{\mu \nu} \frac{\sin (2 e B s)}{B}-g_{\|}^{\mu \nu}-g_{\perp}^{\mu \nu} \cos (2 e B s)\right]
$$

where $g_{\|}^{\mu \nu}=\operatorname{diag}(+1,0,0,-1) ; g_{\perp}^{\mu \nu}=\operatorname{diag}(0,-1,-1,0)$ and $F^{\mu \nu}$ is the electromagnetic field tensor. 3 different tensor structures !

Landau Levels

－Another expression of fermion propagator in the B field：

$$
\$(k)=i \exp \left[-\frac{k_{\perp}^{2}}{e B}\right] \sum_{n=0}^{\infty} \frac{(-1)^{n} I D_{n}(e B, k)}{k_{0}^{2}-k_{3}^{2}-M^{2}-2 n e B}
$$

－Free energy spectrum

$$
E_{n}^{3+1}\left(k_{3}\right)= \pm \sqrt{\left(2 n+2 s_{3}+1\right)|e B|+k_{3}^{2}+m^{2}}
$$

where s_{3} is the projection of the spin on the B field and $n=0,1,2, \ldots$ is the orbital quantum number．
－Lowest Landau Level assumption of fermions in 3－direction while $B \rightarrow \infty$

$$
E_{0}^{3+1}\left(k_{3}\right)= \pm\left|k_{3}\right|
$$

O Is the effective mass of fermions able to treat as $m_{\text {eff }}^{2}=m^{2}+2 n e B$ at n－th level ？

Equivalent Replacement

How to get a quick physics answer in phenomena？
As one of candidate to explain the inverse magnetic catalysis，QCD phase transition has been intensively studied at finite chiral chemical poten－ tial μ_{5} ．c．f．（JC，P．Chu and M．Huang，Phys．Rev．D，88， 054009 （2013）．）

Indeed，nonzero n_{5} inducing in electromagnetic field is expressed by：c．f．（K． Fukushima，D．E．Kharzeev and H．J．Warringa，Phys．Rev．D 78， 074033 （2008））

$$
\partial_{\mu}\left(j_{5}^{3}\right)^{\mu}=-\frac{\mathrm{e}^{2}}{16 \pi^{2}} \varepsilon^{\alpha \beta \mu \nu} F_{\alpha \beta} F_{\mu \nu} \cdot \operatorname{tr}\left[\tau^{3} Q^{2}\right]
$$

where F is the electromagnetic field strength．
It turns out $\nu_{5} \bar{\psi} \gamma_{0} \gamma_{5} \tau_{3} \psi$ is added into the Lagrangian because of the coupling of quarks to electromagnetism，i．e．，electromagnetic anomaly．

Fermion－Sign Problem

Presented by the γ_{5}－hermiticity：

$$
\begin{gathered}
D(\mu)=I D+m-\gamma_{0} \mu \\
\gamma_{5} D^{\dagger}(\mu) \gamma_{5}=D\left(-\mu^{*}\right) \Longrightarrow \operatorname{det} D(\mu)=\left(\operatorname{det} D\left(-\mu^{*}\right)\right)^{*}
\end{gathered}
$$

Some QCD－like theories（two－color QCD or finite isospin QCD）free of the sign problem，where the analytic continuation can be compared with Monte Carlo determinations obtained directly at real chemical potentials
－QCD with μ_{I} finite isospin QCD $\quad \operatorname{det} D\left(\mu_{I}\right) \cdot \operatorname{det} D\left(-\mu_{I}\right)=\left|\operatorname{det} D\left(\mu_{I}\right)\right|^{2}$
－Dirac operator satisfies the anti－unitary symmetry two－color QCD

$$
D(\mu) t_{2} C \gamma_{5}=t_{2} C \gamma_{5} D(\mu)^{*}
$$

QCD－like Theory in $N_{C}=2$

The global symmetries of the $\operatorname{SU}\left(N_{f}\right)$ flavor space can be extended to $\operatorname{SU}\left(2 N_{f}\right)$

$$
\Psi=\binom{\psi_{L}}{\tilde{\psi}_{R}}, \quad \Psi^{\dagger}=\left(\psi_{L}^{\dagger}, \tilde{\psi}_{R}^{\dagger}\right)
$$

at $N_{C}=2$ since it allows to rotate ψ_{R}^{C} into ψ_{L} where $\tilde{\psi}_{R}=-i t_{2} C \psi_{R}^{*}$ and C is the complex conjugate operator in spinor space．
－Symmetry is established by the connection between quarks and antiquarks
－Color－neutral bound states of two quarks，bosonic baryons mesons and scalar diquarks become degenerate！
－Similar phase diagram as for $N_{c}=3$ pion and diquark condensation at finite μ_{I} and μ_{B} ，respectively

Patterns of symmetry breaking

$$
\mathscr{L}_{\mathrm{mass}}=\frac{m_{0}}{2}\left(\Psi^{T} i t_{2} C E_{4} \Psi-\Psi^{* T} i t_{2} C E_{4} \Psi^{*}\right)
$$

The mass operator

$$
E_{4}=\left(\begin{array}{cc}
0 & \tau_{0} \\
-\tau_{0} & 0
\end{array}\right)
$$

obey the relation $S_{a}^{T} E_{4}+E_{4} S_{a}=0$ for $S^{a} \in \operatorname{Sp}(2)$

$$
\mathrm{SU}(4) \rightarrow \mathrm{Sp}(2) \quad \text { at } m \neq 0
$$

The chemical potential μ is introduce by $\mu \Psi^{\dagger} B_{0} \Psi$ via the $\mathscr{L}_{\text {kin }}=\Psi^{\dagger} i \sigma^{\mu} D_{\mu} \Psi$

$$
B_{0}=-\gamma_{0} E_{4}=\left(\begin{array}{cc}
\tau_{0} & 0 \\
0 & -\tau_{0}
\end{array}\right)
$$

breaks

$$
\mathrm{SU}(4) \rightarrow \mathrm{SU}_{L}(2) \times \mathrm{SU}_{R}(2) \quad \text { at } \mu \neq 0
$$

Incorporating External Fields in ChPT

- Including external gauge fields in QCD

$$
\begin{gathered}
\mathscr{L}_{\psi}=\bar{\psi}_{L} D_{L} \psi_{L}+\bar{\psi}_{R} D_{R} \psi_{R} \\
\left(D_{L}\right)_{\mu}=\partial_{\mu}+i g \mathcal{A}_{\mu}+i L_{\mu} \quad\left(D_{R}\right)_{\mu}=\partial_{\mu}+i g \mathcal{A}_{\mu}+i R_{\mu}
\end{gathered}
$$

Covariant derivative is required to compensate the gauge transformation of $\psi_{L} \rightarrow L(x) \psi_{L}$ and $\psi_{R} \rightarrow R(x) \psi_{R}$

- Incorporate external gauge fields in ChPT

$$
\begin{gathered}
\Sigma \rightarrow L(x) \Sigma R^{\dagger}(x) \\
D_{\mu} \Sigma=\partial_{\mu} \Sigma+i L_{\mu} \Sigma-i \Sigma R_{\mu}^{\dagger}
\end{gathered}
$$

Bilinear fields Σ are modified to keep local invariance after transformation

Chiral Lagrangian and Its Predictions

The isospin density，$v \bar{\psi} \gamma_{0} \tau_{3} \psi$ ，is written as $v \Psi^{\dagger} I_{0} \Psi$ with $I_{0}=\operatorname{Diag}\left(\tau_{3},-\tau_{3}\right)$ ． Applying the gauge transformation

$$
\Psi \rightarrow V \Psi, \quad V=\exp \left(i \theta^{i} X_{i}\right)
$$

The Lagrangian term of leading order in ChPT is shown as

$$
\mathcal{L}_{\chi \mathrm{PT}}=\frac{f_{\pi}^{2}}{4} \operatorname{Tr}\left(D_{\mu} \Sigma\right)^{\dagger}\left(D_{\mu} \Sigma\right)-c \operatorname{Tr}\left(\Sigma^{\dagger}+\Sigma\right)
$$

The isospin baryon current is embedded in $\pi_{ \pm}$mesons

$$
\mathscr{L}_{\chi \mathrm{PT}}=\mathscr{L}_{\pi_{i}} \sim \operatorname{Tr}\left[\tau_{3} v, \Sigma\right]\left[\Sigma^{\dagger},-\tau_{3} v\right] \sim+v^{2} \operatorname{Tr}\left(\tau_{3} \Sigma \tau_{3} \Sigma^{\dagger}\right)
$$

one has $\left[X_{i}, I_{0}\right] \neq 0$ for $i=1,2$ ．

Chiral Lagrangian and Its Predictions，cont

Similarly，one has $\left[X_{i}, B_{0}\right]$ becoming nonzero for $i=4,5$ and

$$
\mathscr{L}_{\chi \mathrm{PT}}=\mathscr{L}_{\Delta, \Delta^{*}} \sim \operatorname{Tr}\left\{\tau_{0} \mu, \Sigma\right\}\left\{\Sigma^{\dagger},-\tau_{0} \mu\right\} \sim-\mu^{2} \operatorname{Tr}\left(\Sigma \Sigma^{\dagger}\right)
$$

The different commutation bracket is corresponding to different composition
It predicts that $\langle\bar{q} q\rangle \neq 0$ and $\langle q q\rangle \neq 0$ for $\mu \geq \frac{m_{\pi}}{2}$ ．
$\nu_{5} \bar{\psi} \gamma_{0} \gamma_{5} \tau_{3} \psi$ is expressed as $\nu_{5} \Psi{ }^{\dagger} I_{5} \Psi$ with $I_{5}=\gamma_{5} I_{0}=\operatorname{Diag}\left(\tau_{3}, \tau_{3}\right)$ where $\left[X_{i}, I_{5}\right] \neq 0$ for $i=1,2,4,5$ and $\left[S_{a}, I_{5}\right] \neq 0$ for $a=1,2,8,9$ ．Therefore，

$$
\begin{aligned}
& \mathscr{L}_{\chi \mathrm{PT}}=\mathscr{L}_{\pi_{i}} \sim \operatorname{Tr}\left[\tau_{3} v_{5}, \Sigma\right]\left[\Sigma^{\dagger}, \tau_{3} v_{5}\right] \sim-v_{5}^{2} \operatorname{Tr}\left(\tau_{3} \Sigma \tau_{3} \Sigma^{\dagger}\right) \\
& \mathscr{L}_{\chi \mathrm{PT}}=\mathscr{L}_{\Delta, d} \sim \operatorname{Tr}\left\{\tau_{3} v_{5}, \Sigma\right\}\left\{\Sigma^{\dagger}, \tau_{3} v_{5}\right\} \sim+v_{5}^{2} \operatorname{Tr}\left(\tau_{3} \Sigma \tau_{3} \Sigma^{\dagger}\right)
\end{aligned}
$$

Diquarks are energy favored and $\mathrm{Sp}(2)$ reduce to $\mathrm{O}(4)$ at high baryon density

NJL Model at $N_{C}=2$ w．r．t．Diquarks

In terms of Nambu－Gorkov bispinors

$$
\begin{gathered}
\psi=\frac{1}{\sqrt{2}}\binom{q}{C \bar{q}^{T}}, \quad \bar{\psi}=\frac{1}{\sqrt{2}}\left(\bar{q}, q^{T} C\right) \\
\nu_{5}=\mu_{L}^{u}-\mu_{R}^{u}=\mu_{R}^{d}-\mu_{L}^{d} \Longrightarrow\left(\psi_{L}^{u} \psi_{R}^{d} \pm \psi_{R}^{u} \psi_{L}^{d}\right)
\end{gathered}
$$

τ_{1} sector locates in the flavor symmetric channel and spin direction of $s=$ $1, s_{z}=0$ is selected due to the Pauli principle．

$$
\begin{gathered}
\mathscr{L}_{\mathrm{NJL}}=\bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}+\mu \gamma_{0}+\nu_{5} \gamma_{0} \gamma_{5} \tau_{3}-m_{0}\right) \psi+\mathscr{L}_{\bar{q} q}+\mathscr{L}_{q q} \\
\mathscr{L}_{\bar{q} q}=\frac{G}{2}\left[(\bar{\psi} \psi)^{2}+\left(\bar{\psi} i \gamma_{5} \vec{\tau} \psi\right)^{2}\right] \\
\mathscr{L}_{q q}=\frac{H}{2}\left(\bar{\psi} i \gamma_{5} \tau_{2} t_{2} C \bar{\psi}^{T}\right)\left(\psi^{T} C i \gamma_{5} \tau_{2} t_{2} \psi\right)-\frac{H}{4}\left(\bar{\psi} \gamma_{3} \tau_{1} t_{2} C \bar{\psi}^{T}\right)\left(\psi^{T} C \gamma_{3} \tau_{1} t_{2} \psi\right)
\end{gathered}
$$

Energy Dispersion

Applying $\pi_{3}=-\frac{G}{2}\left\langle\bar{\psi} i \gamma_{5} \tau_{3} \psi\right\rangle, \quad \Delta=-\frac{H}{2}\left\langle\psi^{T} i \gamma_{5} \tau_{2} t_{2} C \psi\right\rangle, \quad \Delta^{*}=$ $-\frac{H}{2}\left\langle\bar{\psi} i \gamma_{5} \tau_{2} t_{2} C \bar{\psi}^{T}\right\rangle, d=-\frac{H}{4}\left\langle\psi^{T} \gamma_{3} \tau_{1} t_{2} C \psi\right\rangle$ and $d^{*}=-\frac{H}{4}\left\langle\bar{\psi} \gamma_{3} \tau_{1} t_{2} C \bar{\psi}^{T}\right\rangle$ ，

$$
\Omega_{\mathrm{eff}}=\frac{1}{2} \bar{\psi} S^{-1}\left(p ; \pi_{3}, \Delta, d\right) \psi-\frac{\pi_{3}^{2}+|\Delta|^{2}+|d|^{2}}{4 G}
$$

Here，the inverse propagator of fermion is

$$
S^{-1}(p)=\left(\begin{array}{cc}
\not p-M+\gamma_{0} \mu+\gamma_{0} \gamma_{5} \tau_{3} \nu_{5} & \gamma_{5} \tau_{2} \Delta+\gamma_{3} \tau_{1} d \\
-\gamma_{5} \tau_{2} \Delta^{*}-\gamma_{3} \tau_{1} d^{*} & p p-M^{T}-\gamma_{0} \mu+\gamma_{0} \gamma_{5} \tau_{3} \nu_{5}
\end{array}\right)
$$

The energy dispersion in the chiral limit with $\pi_{3}=\Delta=\Delta^{*}=0$ for real d

$$
E_{i}(p)= \pm \sqrt{d^{2}+\mathbf{p}^{2}+\left(\mu \pm v_{5}\right)^{2} \pm 2 \sqrt{d^{2} p_{z}^{2}+\mathbf{p}^{2}\left(\mu \pm v_{5}\right)^{2}}}
$$

Phase Diagram in $\mathrm{QC}_{2} \mathrm{D}$

Phase diagram of two－color QCD within two fundamental quarks in the $\mu-v_{5}$ plane．It contains four different states：superfluid pion π_{3} ，condenses of scalar diquark Δ and axial vector diquark d and a mixed state composed by π_{3} and Δ ．
c．f．（JC，arXiv：1808．01928）
$\underline{\text { Results at Finite Temperature (I) }}$

Scalar diquark condensate Δ and axial vector diquark d as a function of T at given μ and ν_{5}. The units of μ and T are GeV . c.f. (JC, arXiv:1808.01928)

$\underline{\text { Results at Finite Temperature（II）}}$

Neutral pion condensate π_{3} ，scalar diquark condensate Δ and axial vector diquark d as a function of ν_{5} at given μ and T ．The units of μ and T are GeV ．
c．f．（JC，arXiv：1808．01928）

Constraints in Hybrid Star from Modern Cooling Data

Emission of neutrino processed is applied in quark matter for cooling the star
－All quarks need to be paired
－The smallest gaps should be in the range $10 \sim 100 \mathrm{keV}$
－The smallest gaps should have a decreasing density dependence in the relevant domain of $\mu_{\text {crit }} \leq \mu \leq 0.5 \mathrm{GeV}$
c．f．（H．Grigorian，D．Blaschke and D．Voskresensky，Phys．Rev．C 71，045801）

Fitted Cooling Behaviors at $N_{c}=3$

A linear combination of colors，$\lambda_{A=2,5,7}$ locking with spin，$\left(C \gamma_{i=1,2,3}\right)$ ，it re－ mains an unbroken global $\mathrm{SO}(3)$ of mixture and the gap is isotropic

The decreasing gap of spin one diquark d in the range of $\mu \in(0.35,0.5) \mathrm{GeV}$ for $v_{5}=0.25 \pm 0.025 \mathrm{GeV}$ ．
c．f．（JC and C．Zhou，Preliminary）

Summary

Explore the new phases for QCD matter after turning on $\mathbf{E} \cdot \mathbf{B}$ ．

1 Take home message：the possible cooling mechanism in neutron stars．

Include Polyakov loop dynamics．

Thank You for Your Attention！

