Two-particle correlation via Bremsstrahlung

Soyeon Cho and Giwon Ko
(Supervised by Prof. Jin-Hee Yoon)
2018.11.03, The 7th Asian Triangle Heavy-lon Conference

Inha University

Outline

1. Introduction
2. Frameworks
3. Results
4. Summary \& Outlooks

Introduction

Motivation

Ridge structure

- η-independent shape in two-particle angular correlations
- Explained via elliptic and higher-order flows for AA collisions

However, flows in small systems?

Purpose

- Describe the Ridge through kinematics between jets and medium

[^0]
Kinematic interaction between jet \& medium

Jet particles lose their energy while passing through medium via...

- Collision
- Radiation
- Gluon radiation
- Photon radiation (Bremsstrahlung)

1st order diagram for Bremsstrahlung

Previous study in scattering

(a)
(b)

Two symmetric diagrams for parton scattering inside medium \rightarrow constructive interference

$$
\begin{equation*}
d \sigma \sim\left|M_{(a)}+M_{(b)}\right|^{2}=\left|M_{(a)}\right|^{2}+\left|M_{(b)}\right|^{2}+(\text { interference }) \tag{1}
\end{equation*}
$$

- Medium parton aligned along the jet particle
- Collective motion

[^1]
Bremsstrahlung processes

Two diagrams of γ emission and medium parton scattering might interfere constructively.

- Expect to explain the Ridge behavior

Frameworks

Coordinates

Use (E, y, φ) coordinates system

- Jet plane is independent of the beam direction
- Calculate cross section based on Jet plane

Initial condition

- $E_{p}=10 \mathrm{GeV} \rightarrow E_{p^{\prime}}=(1-0 . x) \cdot E_{p} \mathrm{GeV}, x \%$ energy loss
- $\varphi_{p}=10^{\circ} \rightarrow \varphi_{p^{\prime}}=0^{\circ}$

Description for initial medium partons

Consider all possible initial medium partons' momentum

$$
\begin{equation*}
\int d^{3} \vec{a} \rightarrow \int f\left(y_{a}, a_{T}\right) \times d y_{a} d a_{T} d \varphi_{a} \tag{2}
\end{equation*}
$$

Distribution function $f\left(y_{a}, a_{T}\right)$ for describing momentums of initial medium partons

- Maxwell-Boltzmann distribution (MB)

$$
\begin{equation*}
f_{M B}\left(y_{a}, a_{T}\right)=\frac{E_{a} a_{T}}{2 \pi m k_{B} T} \sqrt{\frac{1}{2 \pi m k_{B} T}} \exp \left[-\frac{E_{a}^{2}-m^{2}}{2 m k_{B} T}\right] \tag{3}
\end{equation*}
$$

- Jüttner-Synge distribution (JS)

$$
\begin{equation*}
f_{J S}\left(y_{a}, a_{T}\right)=\frac{E_{a} a_{T}}{4 \pi m^{2} k_{B} T K_{2}\left(m / k_{B} T\right)} \exp \left[-\frac{E_{a}}{k_{B} T}\right] \tag{4}
\end{equation*}
$$

- Phenomenological Parton Distribution from Soft scattering model (phPDs)

$$
\begin{equation*}
f_{\text {phPDs }}\left(y_{a}, a_{T}\right)=A_{\text {Ridge }}\left(1-\frac{\sqrt{m_{\pi}^{2}+p_{T}^{2}} \exp \left[\left|y_{a}\right|-y_{B}\right]}{m_{\pi}\left(m_{d}^{2}+p_{T}^{2}\right)}\right)^{a} \exp \left[-\frac{\mathbf{E}_{\mathbf{a}}}{k_{B} T}\right] \tag{5}
\end{equation*}
$$

[^2]
Description for initial medium partons

Set $T=0.7 \mathrm{GeV} \quad$ From results of momentum kick model calculation
vs. Rapidity

vs. Transverse momentum

- JS/phPDs has larger range in rapidity than MB
- JS/phPDs is spread out in higher transverse momentum than MB

[^3]
Results

Correlation between p^{\prime} and a^{\prime}

$$
T=0.7 \mathrm{GeV} \quad \alpha=0^{\circ} \quad 30 \% \text { Energy loss }
$$

JS

phPDs

- Dependency of distribution function, $f\left(y_{z}, a_{T}\right)$
- $F W H M_{M B}=0.4, \quad F W H M_{J S}=1.0, \quad F W H M_{\text {phPDs }}=0.6$
- MB gives the most narrow peak
- JS gives the most wide peak
- Scales are different each other

Correlation between p^{\prime} and a^{\prime}

$$
\mathbf{T}=\mathbf{0 . 5} \mathrm{GeV} \quad \alpha=0^{\circ} \quad 30 \% \text { Energy loss }
$$

JS

phPDs

- Decreasing temperature, T
- Overall scales are reduced by half
- Shapes are not changed much

Correlation between p^{\prime} and a^{\prime}

$$
T=0.7 \mathrm{GeV} \quad \alpha=45^{\circ} \quad 30 \% \text { Energy loss }
$$

JS

phPDs

- Increasing rotation angle, α
- Peak position is shifted to higher $\Delta y \approx 1.5$
- $\Delta y_{\text {peak }} \sim 5.0$ when $\alpha \rightarrow 90^{\circ}$
- Overall scales is reduced by half
- Shapes are not changed much

Correlation between p^{\prime} and a^{\prime}

$$
T=0.7 \mathrm{GeV} \quad \alpha=0^{\circ} \quad \mathbf{5 0 \%} \text { Energy loss }
$$

- Increasing Energy loss
- Overall scales are raised more than 60%

Flow effect

Introduce the flow effect for the azimuthal angle

- Fourier decomposition for momentum anisotropy

$$
\begin{equation*}
\frac{d N}{d \varphi}=\frac{N}{2 \pi}\left[1+2 \sum_{n}^{\infty} v_{n} \cos (n \varphi)\right] \tag{6}
\end{equation*}
$$

- Fourier expansion for invariant distribution
- Consider only elliptic flow ($n=2$)

$$
\begin{equation*}
v_{2}=\frac{\alpha}{T}\left(p_{T}-\langle v\rangle m_{T}\right) \tag{8}
\end{equation*}
$$

Correlation between p^{\prime} and a^{\prime}

$$
T=0.7 \mathrm{GeV} \quad \alpha=0^{\circ} \quad 30 \% \text { Energy loss } \quad 40 \% \text { flow effect }
$$

MB

JS

phPDs

- Adding flow effect
- Peak is raised by ~ 2 times

Summary \& Outlooks

Summary \& Outlooks

Summary

Try to describe the Ridge structure through kinematic interpretation

- Correlation between p^{\prime} and a^{\prime}
- $f\left(y, a_{T}\right): M B, J S$ and phPDs
- MB gives the most narrow peak
- JS gives the most wide peak
- $T \downarrow \quad:$ Scale is getting reduced
$\circ \alpha \uparrow \quad:$ Peak position shifts to higher Δy but not much change in shape
- Energy loss \uparrow : Scale is getting larger
- Flow effect + : Peak is getting larger

Outlooks

- Integrate over whole rotaion angle α
- Expand to multiple scttering
- Eventually include Gluon Radiation

Thanks for your attention!

[^0]: CMS collaboration, Physical Letters B 724, 213240 (2013)
 ATLAS collaboration, Physical Review Letters 116, 172301 (2016)

[^1]: C. Y. Wong, Physical Review C 85, 064909 (2012)

[^2]: C. Y. Wong, Physical Review C 76, 054908 (2007)

[^3]: C. Y. Wong, Physical Review C 84, 024901 (2011)

