

Experimental results from STAR

ShinIchi Esumi for the STAR collaboration

Inst. of Physics, Univ. of Tsukuba Tomonaga Center for the History of the Universe (TCHoU)

Contents

- Collective flow and jet correlations
- Vortical, chiral magnetic fluid
- Critical fluctuations
- Beam energy scan II

ShinIchi Esumi, Univ. of Tsukuba, TCHoU

The STAR experimental setup

Chemical freeze-out and Baryon density

Baryon density increases with decreasing beam energy.

Baryon density is also known to have a peak at about 8 GeV based on transport models.

STAR, Phys. Rev. C 96 (2017) 44904

 $K^{+}/\pi^{+} K^{-}/\pi^{-}$

Ο

100

 $\sqrt{s_{_{NN}}}$ (GeV)

₽

ē

10

World data

STAR BES

1000

P

v₂ evolution with beam energy

0.2

0.

22

22

0.08

0.06

10⁴

a)

6

Large directed flow of open charm and Λ_c enhancement

much larger slope (dv_1/dy) than other particles

Elliptic flow extraction in small system

Beam energy scan with d+Au collisions at RHIC, Multiplicity- (initial density-) dependent elliptic flow is observed in small systems with two extreme non-flow subtractions.

Di-jet asymmetry and hadron-jet spectra

Jet quenching/modification and relation with v_2 trigger direction mid-central central more peripheral 0/.8 Au+Au $\sqrt{s_{NN}} = 200 \text{ GeV}$ 0-10% 10-40% 40-60% $p_{-}^{t}xp_{-}^{a}=4-10x1-2$ (GeV/c) STAR preliminary 1/N^tdN^{ta}/d∆∲ • q, top 20% 0.6 q bottom 20% 0.4 0.2 -0.2 mid-plane : $\frac{-2\pi}{8} < \phi^t \cdot \Psi_2 < \frac{-\pi}{8}$ -0.4 3 4 2 $\Delta \phi$ (rad)

 2^{nd} order E.P. Φ_2 direction

Event Shape Engineering cut is applied Large q₂ selection -> Large v₂ event for a given centrality

Jet shape is modified by v_2

STAR, QM18

 v_2 is affected by jet

 $(\Delta \phi = \phi_{\text{Asso.}} - \phi_{\text{Trig.}})$

ATHIC2018, 3/Nov/2018, USTC, China

Source tilt via HBT w.r.t. Φ_1 plane

M A Lisa et al. New J. Phys. 13 (2011) 065006

|η| < 1Centrality 10 - 50 % 0.15 < k_T < 0.6 GeV/*c* $\pi^+\pi^+$ and $\pi^-\pi^-$ combined

note : E.P. resolution correction has not yet been applied for both data sets. (σ_{FP} : 0.2-0.3)

Positive tilt, which is expected to be much smaller than earlier AGS data

Global polarization via Lambda decay

The Fastest Fluid

by Sylvia Morrow

Superhot material spins at an incredible rate.

Clearly positive **L** signal Possible hint of **B** signal

ATHIC2018, 3/Nov/2018, USTC, China

ShinIchi Esumi, Univ. of Tsukuba, TCHoU 14

Lambda longitudinal-local polarization

Net-proton as a proxy for conserved net-baryon fluctuation

6th-order cumulants of net-proton and net-charge

Higher-order cumulants are expected to be more sensitive to the critical fluctuation than lower orders. Even more statistics needed though ...

ATHIC2018, 3/Nov/2018, USTC, China

Summary

- Collective expansion and thermal freeze-out
- Flow correlation with jet quenching, energy loss
- Vortical correlation, chiral magnetic fluid
- Critical fluctuation to look for critical point
- BES-II plans for fluctuation, vorticity, CME and v₁

QCD Phase-Diagram Temperature T [MeV] 200 LHC and Early universe Quarks and Gluons RHIC(200GeV) Deconfinement 8 Beam Energy Scan II chiral transition (BES2) at RHIC-STAR RHIC & LHC Critical point? 100 FAIR, NICA, HIAF, J-PARC Hadrons 65151530 Color Super-\$ 20 conductor? Neutron sta 0 Nuclei Net Baryon Density

Back-up slides

Beam Energy Scan II @ STAR

Jet quenching/modification and relation with v_2

STAR, QM18, APS/JPS2018

- Trigger angle dependence of di-hadron correlation
- Flow subtracted shape shows strong trigger angle dependence.
- More associated particles are seen in Φ_2 E.P. direction.
- The effect is stronger in large q₂ (v₂) events.

ATHIC2018, 3/Nov/2018, USTC, China

Unfolding of "unkown and critical" net-distribution

test simulation

EMMI workshop in Wuhan 2017

volume fluctuation can be included as a part of response matrix
temperature fluctuation could be unfolded via <p_T> fluctuation together with the number fluctuation, which is done in 4D-R.M.

ATHIC2018, 3/Nov/2018, USTC, China

ShinIchi Esumi, Univ. of Tsukuba, TCHoU 26

4D-correlation (N_1, N_2, T_1, T_2) plotted as { $f(N_1, T_1)$, $f(N_2, T_2)$ }

Expanded view, to show the recovery of correlation $(T_1 vs T_2)$

