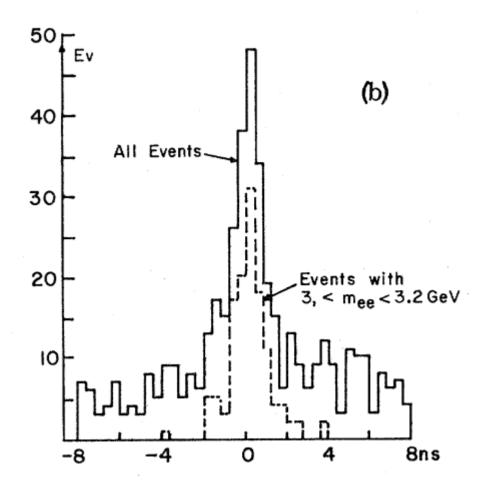

Experimental Observation of a Heavy Particle J

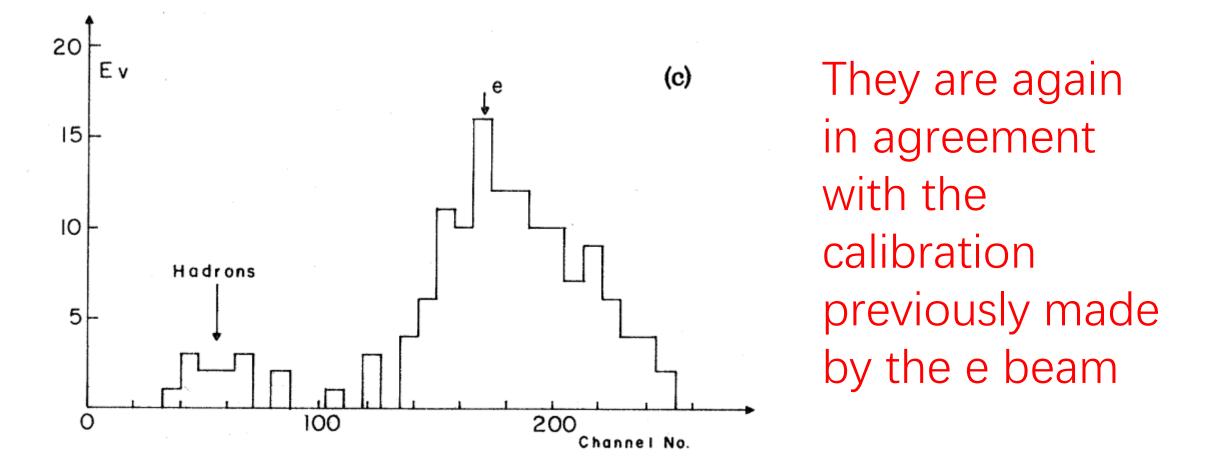
2018-07-06

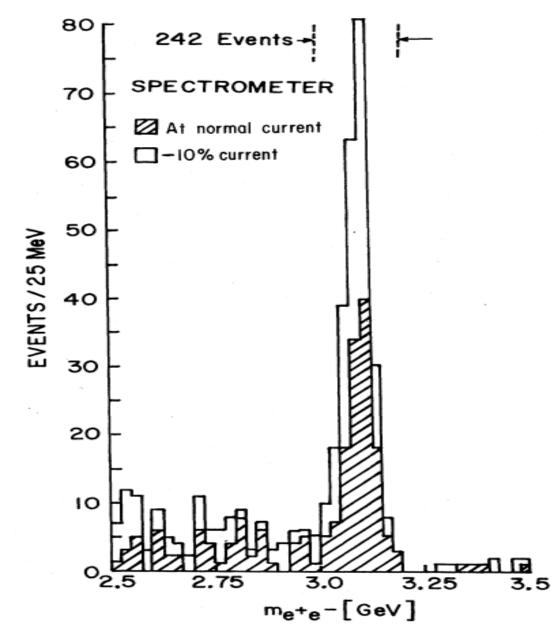
Spectrometer



M1, M2: magnet, decouple the angle and the momentum of the particle
Co, Ce: Cherenkov counter, record the angle and the momentum of the particle(Calibration of these counters is done with approximately 6-GeV electrons produced with a lead converter target)
Other Chambers(2*Ao, 3*A, 3*B, 3*C): reduce multitrack confusion
25 lead glass counters: behind C, further reject hadrons from electrons and improve track identification

Beam and Process


Beam: The beam intensity varies from 10¹⁰ to 2*10¹² p/pulse. The beam is guided onto an extended target, normally nine pieces of 70-mil Be, to enable us to reject the pair accidentals by requiring the two tracks to come from the same origin


Process: $p+Be->e^++e^-+x$ (Be is the fixed target, this is a fixed target experiment)

The time-of-flight spectrum between the e⁺ and e⁻ arms in the mass region 2.5<m<3.5GeV, a clear peak of 1.5-nsec width is observed

 e^+ and e^- might come from same particle, to further check that, the article perform a more test to verify the particles we detected are e^+ and e^-

There is a clear sharp enhancement at m = 3.1 GeV

To ensure that the observed peak is indeed a real particle $(J->e^+e^-)$ many experimental checks were made:

- > When we decreased the magnet currents by 10%, the peak remained fixed at 3.1 GeV(see last slide)
- To check second-order effects on the target, we increased the target thickness by a factor of 2. The yield increased by a factor of 2, not by 4
- To check the pileup in the lead glass and shower counters, different runs with different voltage settings on the counters were made. No effect was observed on the yield of J
- To ensure that the peak is not due to scattering from the sides of magnets, cuts were made in the data to reduce the effective aperture. No significant reduction in the J yield was found
- To check the read-out system of the chambers and the triggering system of the hodoscopes, runs were made with a few planes of chambers deleted and with sections of the hodoscopes omitted from the trigger. No effect was observed on the J yield
- > Runs with different beam intensity were made and the yield did not change
- > To avoid systematic errors, half of the data were taken at each spectrometer polarity

Questions from Ryuta

- In this paper, they report the e+e- spectrum from { p + p ->e+e- + X } reaction. Then, there might be { p + p ->mu+ mu- + X } reaction as well, or at least dimuon pairs can be mixed in this channel.
- I think this is an fixed target experiment rather than a beam experiment so, actually the process is $p+Be \rightarrow e^+e^-X$, may be in this process muon can't be produced
- How they can separate muons from electrons?
- ***** Following is my consideration *****
- Suppose the electrons/muons have momentum of P=2 GeV/c,
- Q1.1 Can we separate muon/electron by time of flight difference,
- where we assume the path of 10 m distance (like "Ao" to "C" in Fig.1(a))?
- We can't separate muon/electron by time of flight, but a pre-PID of electron has been done(see Fig.2)
- Q1.2 Can we separate muon/electron by the existence of Cherenkov light, where the Cherenkov counter is filled with H2 (written in the middle of page1)? Same answer as Q1.1

Questions from Tao

How to understand Fig2.?

Time of flight distribution refers to the time differences between time of flight of e^+ and e^- in their own arms, if they come from the same particle decay, this value should be zero