Given by Liang Zhijun in Shanghai

The new silicon microstrips tracker for the Phase-II ATLAS detector

XIAO Suyu from IHEP 20180713

Introduction to LHC phase II upgrade

- High Luminosity-LHC(HL-LHC) is foreseen to be completed in 2026
 - will substantially improved Higgs measurement precision (eg: H->μμ)
 - aim to increase the iintegrated luminosity to about ten times the LHC design
 - instant luminosity ~5-7.5*10³⁴cm⁻²s⁻¹, deliver 3000fb⁻¹
 - expect to have 200 collision per bunch crossing

Current LHC

High luminosity LHC

ATLAS Inner TracKer(ITK) upgrade

• Require a new full-silicon tracker for upgrade(more area/channels)

In the ITK strip tracker upgrade

Strip detector comparisons	Current Inner strip tracker (SCT)	Future ITK strip tracker
Radial distance	300-560mm	400-1000mm
Channels	~8 millions	~100 millions
Modules	4 thousands	~20 thousands (165m ² silicon)

Structure of the silicon strip tracker

- Global structure: 4 layers of silicon strip tracker in Barrel
- Local structure(Stave): 28 barrel modules on each stave

Module: the basic detector unit

- 10 readout ASIC(ABC130) wire-bonded on one hybrid
- 2 hybrid are glued on short strip sensor, and wire bonded to sensor to readout 2560 channels each
 One Module prototype by IHEP

Radiation hard strip sensor

- n+-on-p strip sensor(9.7cm² * 9.7cm²)
 - collect electrons(fast carrires, reduce charge trapping)
 - > 22k(10k) electrons for MIP before(after) irradiation
- Market survey for 2 company(Infineon and hamamatsu)
 - Infineon gave up the project recently
 - final sensor is likely to order from hamamatsu
 - final round of prototyping this year, IHEP contribute to testing and qualify sensors

Frontend ASIC: ABCStar chip

- IHEP/THU contributed to ASIC digital design
- ABCStar readout chip
 - Standard binary readout architecture
 - Radiation hard design
 - IBM/GF 130nm technology

Progress: ASIC radiation hardness

- Lesson from ATLAS Insertable B layer pixel(IBL) operation
 - Digital current in FEI4 ASIC(IBM/GF 130nm CMOS) increase significantly

ITK project irradiation

IHEP/THU group coordinated the ITK irradiation at SPS(CERN)

C. Bertella presented this study in HSTD2017 conference

Global irradiation: 2 mm beam

Completed few hours

- RotColl out of the beam (no interference)
- 1, 4, 12, 24, 36, 72, 144, 288 bunches (0.5 x 10¹¹p), 288 bunches (10¹¹p)
- Beam spot due to material activation (after glow).
- The intensity of the spot was increasing after each shot.
- The intensity of the spot was decreasing with time
- After each shot, module configuration was lost

Local Irradiation: 0.4mm beam

- after Global irradiation
 - RotColl out of the beam (no interference)
 - •1, 12 bunches (10¹¹protons).
- During RotColl operation
 - Secondaries impacting the test-box
- After RotColl 72, 288 bunches
- Detector dead after 288 bunches
 - Not responding to reconfiguration

TID current bump in ASIC

- ABC130 chip digital current increase after irradiation
- low rate, low temperature irradiations of ABC130 have been done
- expected the digital current increase by 100% after irradiation

Module testbeam at DESY

- Contribution to module testbeam at DESY
 - Xiaocong Ai, Liejian Chen and Yi Liu
 - EUDAQ telescope DAQ support, data analysis, data taking shifts
- ATLAS R0 module and SS module test at E-lab in DESY May 2017
 - S/N > 20, detection efficiency > 99% after irradiation

Module production workflow

Module production at RAL

- Glued 3 modules(2 thermal mechanical and 1 electrical)
- Passed electrical test after wire bonding

IHEP Lab for module production

• An existing class 1000 cleanroom with 150m²

• A new class 10000 clearoom with 80m² is on the way

Flash CNC 300

Hesse BondJet820 Fast auto wire bonder

HESSE BJ820

Local production: Radiation-hard ASICs Import issue

- Rad-hard ASICs under export control → obstacle
- Main driving factors:
 - China's deeper involvements in operation, upgrade and analyses
- Discussion with ATLAS and CERN
 - obtained export license from US DoC

- Overall package (valid for ATLAS/CMS projects), valid for seven years
- Obtained SECO for ABC130 (Swiss export license)

	抗辐照芯片	实验项目	工艺	主要功能
已获得芯片	VMM	ATLAS NSW (一期升 级)	IBM 130nm CMOS	快速前方、成形、甄别前 端芯片
	SCA		130 nm CMOS	慢控芯片
	FEAST		AMS 0.35um HV-CMOS	供电控制芯片
	ABC130	ATLAS ITk-Strip (二 期升级)	IBM 130nm CMOS	硅微条前端读出芯片
	CHESS 2		AMS 0.35um HV-CMOS	集成模拟、部分数字电路
	HGCROC (正在办理)	CMS HGCAL (二期升级)	TSMC 130nm CMOS	高粒度量能器读出芯片

Wire bonding study for module production

- Wire bonding is one of key issue for module production
 - key parameter study: deformation, ultrasonic and force
- How to evaluate the quality ?
 - pull test: important step in QA/QC

New Module production tool by IHEP: 2X2 jig

- IHEP developed new tool to improve the module production efficiency
 - One module each time -> 4 module each time (by Yuzhen)

Issue in production: wire bond corrosion

- Lesson from IBL pixel detector:
 - Al wire Bond Corrosion due to humidity
 - White remnants which are likely Al(OH)3
 - Humidity control became most important step in quality control
 - Humidity at <5%

Issue in production: wire bond protection (encapsulation)

- Another way to protect wire bond: encapsulation
- IHEP/THU group with Oxford contribute to this R & D.
 - Fully encapsulate ASIC back-end wires (ASIC to hybrid)
 - More tests on going check the performance before and after

Glue dispenser to perform The encapsulation R & D

Photo of wire bond encapsulation

