Discovery of a Narrow Resonance in e⁺e⁻ Annihilation

2018-07-06

Subtract

➤ We have observed a very sharp peak in the cross section for e^+e^- hadrons, e^+e^- , and possibly μ^+ , μ^- at a center-of-mass energy of 3.105 +/- 0.003 GeV

The upper limit to the full width at half-maximum is 1.3 MeV

Experiment Method

>Use electron and positron beam

➤Use much finer energy steps(previous: 20MeV)

Use a nuclear magnetic resonance magnetometer to monitor the ring energy

Experiment Results

Discussion

➤ Hadronic events are required to have in the final state either ≤3 detected charged particles or 2 charged particles noncoplanar by > 20°

The observed cross section rises sharply from a level of about 25 nb to a value of 2300 +/- 200 nb at the peak and then exhibits the long high-energy tail characteristic of radiative corrections in e⁺e⁻ reactions.

- ✓ The expected Gaussian c.m. energy distribution (s=0.56 MeV), folded with the radiative processes, is shown as the dashed curve in Fig. (a)
- ✓ The width of the resonance must be smaller than this spread; thus an upper limit to the full width at half-maximum is 1.3 MeV

Discussion

- ➤ Outside the peak in Fig.(b) this cross section is equal to the Bhabha cross section integrated over the acceptance of the apparatus
 - ✓ The e⁺e⁻→hadron cross section is presumed to go through the onephoton intermediate state with angular momentum, parity, and charge conjugation quantum numbers $J^{PC} = 1^{-1}$
 - ✓ It is difficult to understand how, without involving new quantum numbers or selection rules, a resonance in this state which decays to hadrons could be so narrow