
Journal club 2018/8/10

Yang Tao

• Data conversion between c++ types and python types for PyROOT (to

Yuhan)

• Introduction of Regular Expressions in Python

Data conversion between c++ types and

python types for PyROOT

2

Python 3

• int

• float

C++

• short / unsigned short 16 bit

• int / unsigned int 32 bit

• long int / unsigned long int 64 bit

• float 32 bit

• Double 64 bit

Dynamic allocate depends on RAM

Python numpy types

PyROOT

(−∞ ~ +∞)

3

PyROOTROOT

Short_t value_short

Int_t value_int

Long64_t value_long

Float_t value_float

Double_t value_double

value_short = numpy.zeros(1, dtype='int16')

value_int = numpy.zeros(1, dtype='int32')

value_longint = numpy.zeros(1, dtype='int64')

value_float = numpy.zeros(1, dtype='float32')

value_double = numpy.zeros(1, dtype='float64’)

value_vector = ROOT.std.vector(int)()TBranch *Short_Branch = tree->Branch(“short", &value_short, “short/S")

TBranch *Int_Branch = tree->Branch(“int", &value_int, “int/I")

TBranch *Long_Branch = tree->Branch(“long", &value_long, “long/L")

TBranch *Float_Branch = tree->Branch(“float", &value_float, “float/F")

TBranch *Double_Branch = tree->Branch(“double", &value_double, “double/D")

tree.Branch('short', value_short, 'short/S')

tree.Branch('int', value_int, 'int/I')

tree.Branch('long', value_long, 'long/L')

tree.Branch('float', value_float, 'float/F')

tree.Branch(‘double', value_double, 'double/D’)

tree.Branch(‘vector', value_vector)
Address : &

Address : numpy arrary / list []

Corresponding types

Default python data types (int or

float)is not advised for data safety if

you have no enough confidence that

there is no data overflow when you

create a new branch.

4

Pattern Matching with Regular Expressions

in Python

5

Regular expressions, called regexes for short, are descriptions for a pattern of text. For example, a \d in a regex

stands for a digit character — that is, any single numeral 0 to 9. The regex \d\d\d-\d\d\d-\d\d\d\d is used by Python to

match the same text about phonenumber : a string of three numbers, a hyphen, three more numbers, another hyphen,

and four numbers. Any other string would not match the \d\d\d-\d\d\d-\d\d \d\d regex.

>>> import re

>>> phoneNumRegex = re.compile(r'\d\d\d-\d\d\d-\d\d\d\d')

>>> mo = phoneNumRegex.search('My number is 415-555-4242.')

>>> print('Phone number found: ' + mo.group())

Phone number found: 415-555-4242

Here, we pass our desired pattern to re.compile() and store the resulting Regex object inphoneNumRegex. Then

we call search() on phoneNumRegex and pass search() the string we want to search for a match. Knowing that mo

contains a Match object and not the nullvalue None, we can call group() on mo to return the match. Writing mo.group()

inside our print statement displays the whole match, 415-555-4242.

6

• Grouping with Parentheses

>>> phoneNumRegex = re.compile(r'(\d\d\d)-(\d\d\d-

\d\d\d\d)')

>>> mo = phoneNumRegex.search('My number is 415-

555-4242.')

>>> mo.group(1)

'415'

>>> mo.group(2)

'555-4242'

>>> mo.group(0)

'415-555-4242'

>>> mo.group()

'415-555-4242'

If you would like to retrieve all the groups at once, use

the groups() method — note the plural form for the name.

>>> mo.groups()

('415', '555-4242')

>>> areaCode, mainNumber = mo.groups()

>>> print(areaCode)

415

>>> print(mainNumber)

555-4242

7

• Matching Multiple Groups with the Pipe

The “ | ” character is called a pipe. You can use it

anywhere you want to match one of many expressions.

>>> heroRegex = re.compile (r'Batman|Spiderman')

>>> mo1 = heroRegex.search('Batman and Spiderman.')

>>> mo1.group()

'Batman'

>>> mo2 = heroRegex.search(Spiderman and Batman.')

>>> mo2.group()

' Spiderman '

>>> batRegex = re.compile(r'Bat(man|mobile|copter|bat)')

>>> mo = batRegex.search('Batmobile lost a wheel')

>>> mo.group()

'Batmobile'

>>> mo.group(1)

'mobile'

You can also use the pipe to match one of several

patterns as part of your regex

8

• Optional Matching with the Question Mark “ ? ”

Sometimes there is a pattern that you want to match only

optionally. That is, the regex should find a match whether or

not that bit of text is there. The ? character flags the group that

precedes it as an optional part of the pattern.

>>> batRegex = re.compile(r'Bat(wo)?man')

>>> mo1 = batRegex.search('The Adventures of Batman')

>>> mo1.group()

'Batman'

>>> mo2 = batRegex.search('The Adventures of Batwoman')

>>> mo2.group()

'Batwoman'

The (wo)? part of the regular expression

means that the pattern wo is an optional group.

The regex will match text that has zero instances

or one instance of wo in it. This is why

the regex matches both 'Batwoman' and 'Batman'.

If you need to match an actual question mark

character, escape it with \?.

9

• Matching Zero or More with the Star “ * ”

The * (called the star or asterisk) means “match zero or more” — the group that precedes the star can occur any

number of times in the text. It can be completely absent or repeated over and over again.

>>> batRegex = re.compile(r'Bat(wo)*man')

>>> mo1 = batRegex.search('The Adventures of Batman')

>>> mo1.group()

'Batman'

>>> mo2 = batRegex.search('The Adventures of Batwoman')

>>> mo2.group()

'Batwoman'

>>> mo3 = batRegex.search('The Adventures of

Batwowowowoman')

>>> mo3.group()

'Batwowowowoman'

If you need to match an

actual star character, prefix

the star in the regular

expression with a backslash,

*.

10

• Matching One or More with the Plus “ + ”

While * means “match zero or more,” the + (or plus) means “match one or more.” Unlike the star, which does

not require its group to appear in the matched string, the group preceding a plus must appear at least once. It is not

optional.

>>> batRegex = re.compile(r'Bat(wo)+man')

>>> mo1 = batRegex.search('The Adventures of Batwoman')

>>> mo1.group()

'Batwoman'

>>> mo2 = batRegex.search('The Adventures of

Batwowowowoman')

>>> mo2.group()

'Batwowowowoman'

>>> mo3 = batRegex.search('The Adventures of Batman')

>>> mo3 == None

True

If you need to match an

actual plus sign character,

prefix the plus sign with a

backslash to

escape it: \+.

11

• Matching Specific Repetitions with Curly Brackets “ { } ”

If you have a group that you want to repeat a specific number of times, follow the group in your

regex with a number in curly brackets.

>>> haRegex = re.compile(r'(Ha){3}')

>>> mo1 = haRegex.search('HaHaHa')

>>> mo1.group()

'HaHaHa'

>>> mo2 = haRegex.search('Ha')

>>> mo2 == None

True

12

• Greedy and Nongreedy Matching

Python’s regular expressions are greedy by default, which means that in ambiguous situations they will match

the longest string possible. The non-greedy version of the curly brackets, which matches the shortest string possible,

has the closing curly bracket followed by a question mark.

>>> greedyHaRegex = re.compile(r'(Ha){3,5}')

>>> mo1 = greedyHaRegex.search('HaHaHaHaHa')

>>> mo1.group()

'HaHaHaHaHa'

>>> nongreedyHaRegex = re.compile(r'(Ha){3,5}?')

>>> mo2 = nongreedyHaRegex.search('HaHaHaHaHa')

>>> mo2.group()

'HaHaHa'

13

• Appendix : Character Classes

14

